

Filtering (aka Monitoring)

The task of tracking the agent's belief state, B(x), over time

- B(x) is a distribution over world states repr agent knowledge
- We start with B(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)

Many algorithms for this:

- Exact probabilistic inference
- Particle filter approximation
- Kalman filter (a method for handling continuous Real-valued random vars)
 - invented in the 60'for Apollo Program real-valued state, Gaussian noise

Representation: Particles	
 Our representation of P(X) is now a list of N particles (samples) Generally, N << X Storing map from X to counts would defeat the purpose 	• • • • • • • •
 Partic P(x) approximated by (number of particles with value x) / N More particles, more accuracy 	cles: (3,3) (2,3) (3,3) (3,2)
What is P((2,2))? 0/10 = 0%	(3,3) (3,2) (1,2)
In fact, many x may have P(x) = 0!	(3,3) (3,3) (2,3)