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CSE	473:	Artificial	Intelligence

Hidden	Markov	Models

Daniel	Weld
University	of	Washington

[Many	of	these	slides	were	created	by	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are available	at	http://ai.berkeley.edu.]

Hidden	Markov	Models

3



2

Hidden	Markov	Models

§ Defines	a	joint	probability	distribution:
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Hidden	Markov	Model:	Example

§ An	HMM	is	defined	by:
§ Initial	distribution:
§ Transitions:
§ Emissions:
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Conditional	Independence

HMMs	have	two	important	independence	properties:
§ Future	independent	of	past	given	the	present
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Conditional	Independence

HMMs	have	two	important	independence	properties:
§ Future	independent	of	past	given	the	present
§ Current	observation	independent	of	all	else	given	current	state
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Conditional	Independence

§ HMMs	have	two	important	independence	properties:
§ Markov	hidden	process,	future	depends	on	past	via	the	present
§ Current	observation	independent	of	all	else	given	current	state

§ Quiz:	does	this	mean	that	observations	are	independent given	no	evidence?
§ [No,	correlated	by	the	hidden	state]
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Ghostbusters	HMM
§ P(X1)	=	uniform
§ P(X’|X)	=	ghosts	usually	move	clockwise,	

but	sometimes	move	in	a	random	direction	or	stay	put
§ P(E|X)	=	same	sensor	model	as	before:

red means	probably	close,	green means	likely	far	away.
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HMM	Computations

§ Given	
§ parameters
§ evidence E1:n =e1:n

§ Inference problems include:
§ Filtering, find P(Xt|e1:t) for some t
§ Most probable explanation, for some t find 

x*1:t = argmaxx1:t P(x1:t|e1:t)
§ Smoothing, find P(Xt|e1:n) for some t < n

Filtering (aka	Monitoring)

§ The	task	of	tracking	the	agent’s	belief	state,	B(x),	over	time
§ B(x)	is	a	distribution	over	world	states	– repr agent	knowledge
§ We	start	with	B(X)	in	an	initial	setting,	usually	uniform
§ As	time	passes,	or	we	get	observations,	we	update	B(X)

§ Many	algorithms	for	this:
§ Exact	probabilistic	inference
§ Particle	filter	approximation
§ Kalman filter	(a	method	for	handling	continuous	Real-valued	random	vars)

§ invented	in	the	60’for	Apollo	Program	– real-valued	state,	Gaussian	noise
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HMM	Examples

§ Robot	tracking:
§ States	(X)	are	positions	on	a	map	(continuous)
§ Observations	(E)	are	range	readings	(continuous)
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Example:	Robot	Localization

T=1
Sensor	model:	never	more	than	1	mistake

Motion	model:	may	not	execute	action	with	small	prob.

10Prob

Example from Michael 
Pfeiffer
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Example:	Robot	Localization
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Example:	Robot	Localization
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Example:	Robot	Localization
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Example:	Robot	Localization
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Example:	Robot	Localization

t=5

10Prob

Other	Real	HMM	Examples

§ Speech	recognition	HMMs:
§ States	are	specific	positions	in	specific	words	(so,	tens	of	thousands)
§ Observations	are	acoustic	signals	(continuous	valued)
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Other	Real	HMM	Examples

§ Machine	translation	HMMs:
§ States	are	translation	options
§ Observations	are	words	(tens	of	thousands)
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Filtering (aka	Monitoring)

§ Filtering,	or	monitoring,	is	the	task	of	tracking	the	distribution	B(X)
(called	“the	belief	state”)	over	time

§ We	start	with	B0(X)	in	an	initial	setting,	usually	uniform

§ We	update	Bt(X)																							computing	Bt+1(X)
1. As	time	passes,	and	 using	prob model	of	how	ghosts	move
2. As	we	get	observations using	prob model	of	how	noisy	sensors	work
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Filtering:	Base	Cases
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“Observation” “Passage of Time”

Forward	Algorithm

§ t =	0
§ B(Xt)	=	initial	distribution
§ Repeat	forever

§ B’(Xt+1)	=	Simulate	passage	of	time	from	B(Xt)
§ Observe	et+1
§ B(Xt+1)	=	Update	B’(Xt+1) based	on	probability	of	et+1

23
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Passage	of	Time

§ Assume	we	have	current	belief	P(X	|	evidence	to	date)

§ Then,	after	one	time	step	passes:

§ Basic	idea:	beliefs	get	“pushed” through	the	transitions
§ With	the	“B” notation,	we	have	to	be	careful	about	what	time	step	t	the	belief	is	about,	and	what	

evidence	it	includes
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Example:	Passage	of	Time

§ As	time	passes,	uncertainty	“accumulates”

T	=	1 T	=	2 T	=	5

(Transition	model:	ghosts	usually	go	clockwise)
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Observation
§ Assume	we	have	current	belief	P(X	|	previous	evidence):

§ Then,	after	evidence	comes	in:

§ Or,	compactly:
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B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

§ Basic	idea:	beliefs	“reweighted”	
by	likelihood	of	evidence

§ Unlike	passage	of	time,	we	have	
to	renormalize

Example:	Observation

§ As	we	get	observations,	beliefs	get	reweighted,	uncertainty	“decreases”

Before	observation After	observation
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Example:	Weather	HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7
+r -r 0.3
-r +r 0.3
-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9
+r -u 0.1
-r +u 0.2
-r -u 0.8

Umbrella1	=	T Umbrella2	=	T

Rain0 Rain1 Rain2

B(+r)	=	0.5
B(-r)		=	0.5

B’(+r)	=	0.5
B’(-r)		=	0.5

B(+r)	=	0.818
B(-r)		=	0.182

B’(+r)	=	0.627
B’(-r)		=	0.373

B(+r)	=	0.883
B(-r)		=	0.117

Video	of	Demo	Pacman – Sonar	(with	beliefs)
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Summary:	Online	Belief	Updates

Every	time	step,	we	start	with	current	P(X	|	evidence)
1.	We	update	for	time:

2.	We	update	for	evidence:

The	forward	algorithm	does	both	at	once	(and	doesn’t	normalize)
Computational	complexity?
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O(X2	+XE)	time	&	O(X+E)	space

Particle	Filtering
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Particle	Filtering	Overview

§ Approximation	technique	to	solve	filtering	problem
§ Represents	P	distribution	with	samples
§ Filtering	still	operates	in	two	steps

§ Elapse	time
§ Incorporate	observations

§ (But	this	part	has	two	sub-steps:	weight	&	resample)

35

Particle	Filtering

§ Sometimes	|X|	is	too	big	to	use	exact	inference
§ |X|	may	be	too	big	to	even	store	B(X)
§ E.g.	X	is	continuous

§ Solution:	approximate	inference
§ Track	samples	of	X,	not	exact	distribution	of	values
§ Samples	are	called	particles
§ Time	per	step	is	linear	in	the	number	of	samples
§ But:	number	needed	may	be	large
§ In	memory:	list	of	particles,	not	states

§ Particle	is	just	new	name	for	sample

§ This	is	how	robot	localization	works	in	practice
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Remember…

An	HMM	is	defined	by:
§ Initial	distribution:
§ Transitions:
§ Emissions:

Here’s	a	Single	Particle
§ It	represents	a	hypothetical	state	where	the	robot	is	in	(1,2)
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Particles Approximate	Distribution
§ Our	representation	of	P(X)	is	now	a	list	of	N	particles	(samples)

§ Generally,	N	<<	|X|

Particles: (3,3)
(2,3)
(3,3)			
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

P(x)
Distribution

P(x=<3,3>) = 5/10 = 50%

Particle	Filtering

A	more	compact	view	overlays the	samples:

Encodes à

0.0 0.2

0.1 0.0

0.5

0.2

0.0 0.2 0.5
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Representation:	Particles
§ Our	representation	of	P(X)	is	now	a	list of	N	particles	(samples)

§ Generally,	N	<<	|X|
§ Storing	map from	X	to	counts	would	defeat	the	purpose

§ P(x)	approximated	by	(number	of	particles	with	value	x)	/	N
§ More	particles,	more	accuracy

§ What	is	P((3,3))?

Particles: (3,3)
(2,3)
(3,3)			
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

5/10 = 50%

Representation:	Particles
§ Our	representation	of	P(X)	is	now	a	list	of	N	particles	(samples)

§ Generally,	N	<<	|X|
§ Storing	map	from	X	to	counts	would	defeat	the	purpose

§ P(x)	approximated	by	(number	of	particles	with	value	x)	/	N
§ More	particles,	more	accuracy

§ What	is	P((2,2))?

§ In	fact,	many	x	may	have	P(x)	=	0!	

Particles: (3,3)
(2,3)
(3,3)			
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

0/10 = 0%


