CSE 473: Artificial Intelligence

 Hidden Markov Models

University of Washington

Hidden Markov Models

Hidden Markov Models

- Defines a joint probability distribution:

$$
\begin{aligned}
& P\left(X_{1}, \ldots, X_{n}, E_{1}, \ldots, E_{n}\right)= \\
& P\left(X_{1: n}, E_{1: n}\right)= \\
& P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{N} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)
\end{aligned}
$$

Hidden Markov Model: Example

- An HMM is defined by:
- Initial distribution:
$P\left(X_{1}\right)$
- Transitions:
$P\left(X_{t} \mid X_{t-1}\right)$
- Emissions:
$P(E \mid X)$

Conditional Independence

HMMs have two important independence properties:

- Future independent of past given the present

Conditional Independence

HMMs have two important independence properties:

- Future independent of past given the present
- Current observation independent of all else given current state

Conditional Independence

- HMMs have two important independence properties:
- Markov hidden process, future depends on past via the present
- Current observation independent of all else given current state

- Quiz: does this mean that observations are independent given no evidence?
- [No, correlated by the hidden state]

Ghostbusters HMM

- $P\left(X_{1}\right)=$ uniform
- $P\left(X^{\prime} \mid X\right)=$ ghosts usually move clockwise, but sometimes move in a random direction or stay put
- $P(E \mid X)=$ same sensor model as before:
red means probably close, green means likely far away.

$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$

$P\left(X_{1}\right)$

Etc...
$P\left(X^{\prime} \mid X=<1,2>\right)$
P(green | 3)
0.3

Etc... (must specify for other distances)

HMM Computations

- Given
- parameters
- evidence $E_{1: n}=e_{1: n}$
- Inference problems include:
- Filtering, find $P\left(X_{t} \mid e_{1: t}\right)$ for some t
- Most probable explanation, for some t find

$$
x_{1: t}^{*}=\operatorname{argmax}_{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)
$$

- Smoothing, find $P\left(X_{t} \mid e_{1: n}\right)$ for some $t<n$

Filtering (aka Monitoring)

- The task of tracking the agent's belief state, $B(x)$, over time
- $B(x)$ is a distribution over world states - repr agent knowledge
- We start with $B(X)$ in an initial setting, usually uniform
- As time passes, or we get observations, we update $B(X)$
- Many algorithms for this:
- Exact probabilistic inference
- Particle filter approximation
- Kalman filter (a method for handling continuous Real-valued random vars)
- invented in the 60'for Apollo Program - real-valued state, Gaussian noise

HMM Examples

- Robot tracking:
- States (X) are positions on a map (continuous)
- Observations (E) are range readings (continuous)

Example: Robot Localization

Example from Michael Pfeiffer

Sensor model: never more than 1 mistake Motion model: may not execute action with small prob.

Example: Robot Localization

Prob
$t=1$

Example: Robot Localization

Example: Robot Localization

Prob

$$
\mathrm{t}=3
$$

Example: Robot Localization

Example: Robot Localization

Prob

$$
\mathrm{t}=5
$$

Other Real HMM Examples

- Speech recognition HMMs:
- States are specific positions in specific words (so, tens of thousands)
- Observations are acoustic signals (continuous valued)

Other Real HMM Examples

- Machine translation HMMs:
- States are translation options
- Observations are words (tens of thousands)

Filtering (aka Monitoring)

- Filtering, or monitoring, is the task of tracking the distribution $B(X)$ (called "the belief state") over time
- We start with $B_{0}(X)$ in an initial setting, usually uniform
- We update $B_{t}(X)$

1. As time passes, and
2. As we get observations
computing $B_{t+1}(X)$
using prob model of how ghosts move
using prob model of how noisy sensors work

Filtering: Base Cases

Forward Algorithm

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- $\mathrm{t}=0$
- $\mathrm{B}\left(\mathrm{X}_{\mathrm{t}}\right)=$ initial distribution
- Repeat forever
- $\mathrm{B}^{\prime}\left(\mathrm{X}_{\mathrm{t}+1}\right)=$ Simulate passage of time from $\mathrm{B}\left(\mathrm{X}_{\mathrm{t}}\right)$
- Observe $\mathrm{e}_{\mathrm{t}+1}$
- $B\left(X_{t+1}\right)=$ Update $B^{\prime}\left(X_{t+1}\right)$ based on probability of e_{t+1}

Passage of Time

- Assume we have current belief $P(X \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Or compactly:
$B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)$
- Basic idea: beliefs get "pushed" through the transitions
- With the " B " notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

- As time passes, uncertainty "accumulates"

$\mathrm{T}=1$

$\mathrm{T}=2$
(Transition model: ghosts usually go clockwise)

$\mathrm{T}=5$

Observation

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ previous evidence):

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

- Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto X_{t+1} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

- Basic idea: beliefs "reweighted" by likelihood of evidence

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

- Unlike passage of time, we have to renormalize

Example: Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

$$
B(X) \propto P(e \mid X) B^{\prime}(X)
$$

Example: Weather HMM

R_{t}	R_{t+1}	$P\left(R_{t+1} \mid R_{t}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

Video of Demo Pacman - Sonar (with beliefs)

Summary: Online Belief Updates

Every time step, we start with current $\mathrm{P}(\mathrm{X} \mid$ evidence $)$

1. We update for time:

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

2. We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

The forward algorithm does both at once (and doesn't normalize) Computational complexity?

$$
O\left(X^{2}+X E\right) \text { time \& } O(X+E) \text { space }
$$

Particle Filtering

Particle Filtering Overview

- Approximation technique to solve filtering problem
- Represents P distribution with samples
- Filtering still operates in two steps
- Elapse time
- Incorporate observations
- (But this part has two sub-steps: weight \& resample)

Particle Filtering

- Sometimes $|X|$ is too big to use exact inference
- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous
- Solution: approximate inference
- Track samples of \boldsymbol{X}, not exact distribution of values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states
- Particle is just new name for sample
- This is how robot localization works in practice

Remember...

An HMM is defined by:

- Initial distribution:

- Transitions:
- Emissions:

$$
P\left(X_{1}\right)
$$

$$
P\left(X_{t} \mid X_{t-1}\right)
$$

$P(E \mid X)$

Here's a Single Particle

- It represents a hypothetical state where the robot is in $(1,2)$

Particles Approximate Distribution

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, N << |X|

Particle Filtering

A more compact view overlays the samples:

Encodes $\rightarrow \quad$| 0.0 | 0.2 | 0.5 |
| :--- | :--- | :--- |
| 0.1 | 0.0 | 0.2 |
| 0.0 | 0.2 | 0.5 |

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, N << |X|
- Storing map from X to counts would defeat the purpose

- $P(x)$ approximated by (number of particles with value \mathbf{x}) / N
$(2,3)$
$(3,3)$
$(3,2)$
$(3,3)$
$(3,2)$
$(1,2)$
$(3,3)$
$(3,3)$
$(2,3)$

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, N << |X|
- Storing map from X to counts would defeat the purpose

- $\mathrm{P}(\mathrm{x})$ approximated by (number of particles with value \mathbf{x}) / N

Particles: $(3,3)$

- More particles, more accuracy
- What is $P((2,2))$? $\quad 0 / 10=0 \%$
- In fact, many x may have $P(x)=0$!

