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CSE	473:	Artificial	Intelligence

Probability	Review…àMarkov	Models

Daniel	Weld
University	of	Washington

[These	slides	were	created	by	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	http://ai.berkeley.edu.]

Outline

§ Probability
§ Random	Variables
§ Joint	and	Marginal	Distributions
§ Conditional	Distribution
§ Product	Rule,	Chain	Rule,	Bayes’	Rule
§ Inference
§ Independence	&	Conditional	Indpendence
§ …Markov	Models

§ You’ll	need	all	this	stuff	A	LOT	for	the	
next	few	weeks,	so	make	sure	you	go	
over	it	now!



2

Joint	Distributions
§ A	joint	distribution over	a	set	of	random	variables:

specifies	a	probability	for	each	assignment	(or	outcome):	

§ Must	obey:

§ Size	of	joint	distribution	if	n	variables	with	domain	sizes	d?

§ For	all	but	the	smallest	distributions,	impractical	to	write	out!

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Marginal	Distributions

§ Marginal	distributions	are	sub-tables	which	eliminate	variables	
§ Marginalization (summing	out):	Combine	collapsed	rows	by	adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4
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Conditional	Distributions

§ Conditional	distributions	are	probability	distributions	over	some	variables	
given	fixed	values	of	others

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.8
rain 0.2

W P
sun 0.4
rain 0.6

Conditional	Distributions

Joint	Distribution

Normalization	Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

SELECT the	joint	
probabilities	
matching	the	
evidence

NORMALIZE	the	
selection

(make	it	sum	to	one)

§ Why	does	this	work?		Sum	of	selection	is	P(evidence)!		(P(T=c),	here)
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Probabilistic	Inference

§ Probabilistic	inference	=	
“compute	a	desired	probability	from	other	known	
probabilities	(e.g.	conditional	from	joint)”

§ We	generally	compute	conditional	probabilities	
§ P(on	time	|	no	reported	accidents)	=	0.90
§ These	represent	the	agent’s	beliefs given	the	evidence

§ Probabilities	change	with	new	evidence:
§ P(on	time	|	no	accidents,	5	a.m.)	=	0.95
§ P(on	time	|	no	accidents,	5	a.m.,	raining)	=	0.80
§ Observing	new	evidence	causes	beliefs	to	be	updated

Inference	by	Enumeration
§ General	case:

§ Evidence	variables:	
§ Query*	variable:
§ Hidden	variables: All	variables

*	Works	fine	with	
multiple	query	
variables,	too

§ We	want:

§ Step	1:	Select	the	
entries	consistent	
with	the	evidence

§ Step	2:	Sum	out	H	to	get	joint	
of	Query	and	evidence

§ Step	3:	Normalize

⇥ 1

Z
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Example:	Inference	by	Enumeration

P(W=sun	|	S=winter)?

1.	Select	data	consistent	with	evidence

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

Example:	Inference	by	Enumeration

P(W=sun	|	S=winter)?

1. Select	data	consistent	with	evidence
2. Marginalize	away	hidden	variables										

(sum	out	temperature)

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Example:	Inference	by	Enumeration

P(W=sun	|	S=winter)?

1. Select	data	consistent	with	evidence
2. Marginalize	away	hidden	variables										

(sum	out	temperature)
3. Normalize

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

S W P
winter sun 0.25
winter rain 0.25

Example:	Inference	by	Enumeration

P(W=sun	|	S=winter)?

1. Select	data	consistent	with	evidence
2. Marginalize	away	hidden	variables										

(sum	out	temperature)
3. Normalize

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

S W P
winter sun 0.50
winter rain 0.50
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§ Computational	problems?

§ Worst-case	time	complexity	O(dn)	

§ Space	complexity	O(dn)	to	store	the	joint	distribution

Inference	by	Enumeration

Don’t	be	Fooled

§ It	may	look	cute…

38

https://fc08.deviantart.net/fs71/i/2010/258/4/4/baby_dragon__charles_by_imsorrybuti-d2yti11.png
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The	Sword	of	Conditional	Independence!

40

Slay 
the 

Basilisk!

harrypotter.wikia.com/

I am a BIG joint 
distribution!

Means:

Or, equivalently:

A	Brief	Trip	Forward	in	Time…

41
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Preview:	Bayes	Nets	Encode	Joint	Distributions
§ A	set	of	nodes,	one	per	variable	X

§ A	directed,	acyclic	graph

§ A	conditional	distribution	for	each	node

§ A	collection	of	distributions	over	X,	one	for	each	
combination	of	parents’ values

§ CPT:	conditional	probability	table

§ Description	of	a	noisy	“causal” process

A1

X

An

A	Bayes	net	=	Topology	(graph)	+	Local	Conditional	Probabilities

Benefits:	Smaller,	Allows	Fast	Inference,	Learnable!

P(A1 )  ….     P(An )

Preview: Example	Bayes Net		- Car
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Preview:	Dynamic	Bayes	Nets	(DBNs)	- Ghosts
§ We	want	to	track	multiple	variables	over	time,	using	

multiple	sources	of	evidence

§ Idea:	Repeat	a	fixed	Bayes	net	structure	at	each	time
§ Generalization	of	Hidden	Markov	Models	(HMMs)
§ Itself	a	generalization	of	Markov	Models

§ Variables	from	time	tmay	condition	on	those	from	t-1

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t	=1 t	=2

G3
a

E3
a E3

b

G3
b

t	=3

Back	to	Our	Own	Universe… (for	now)

45
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Ghostbusters,	Revisited

§ Let’s	say	we	have	two	distributions:
§ Prior	distribution	over	ghost	location:	P(G)

§ Let’s	say	this	is	uniform
§ Sensor	reading	model:	P(R	|	G)

§ Given:	we	know	what	our	sensors	do
§ R	=	reading	color	measured	at	(1,1)
§ E.g.	P(R	=	yellow	|	G=(1,1))	=	0.1

§ We	can	calculate	the	posterior	distribution
P(G|r)	over	ghost	locations	given	a	reading	
using	Bayes’	rule:

[Demo:	Ghostbuster	– with	probability	(L12D2)	]

What’s	Our	Probabilistic	Model
§ Random	Variables

§ Location	of	Ghost.		Values	=	{L1,1,	L1,2,	…..,	L6,	10}
§ Sensor	value	at	locations	S1,1,	….	S6,10.		Values	=	{R,	O,	Y,	G}

§ Joint	Distribution
§ Too	big	to	write	down	60	*	460			=		7.98	*	1037

§ Here’s	a	schema for	a	conditional	distribution	specifying	part	of	it:

47

P(red	|	3) P(orange	|	3) P(yellow	|	3) P(green	|	3)
0.05 0.15 0.50 0.30

P(red	|	0) P(orange	|	0) P(yellow	|	0) P(green	|	0)
0.70 0.15 0.10 0.05

. . . 
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Model	for	a	Tiny	Ghostbuster
§ Random	Variables

§ Location	of	Ghost,	G.		Values	=	{L1,	L2}
§ Sensor	value	at	locations	S1,	S2	with	values	{R,	O,	Y,	G}

§ Joint	Distribution

48

R          O         Y         G         R          O          Y        G

S1

R
O
Y
G

S2 S2
G=L1 G=L2

Can marginalize to get  P(S1 | distance =0) 

∑S2

Select G=L1

L1 L2

Video	of	Demo	Ghostbusters	with	Probability
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The	Product	Rule

§ Sometimes	have	conditional	distributions	but	want	the	joint

The	Chain	Rule

§ More	generally,	can	always	write	any	joint	distribution	as	an	
incremental	product	of	conditional	distributions
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Bayes’	Rule

§ Two	ways	to	factor	a	joint	distribution	over	two	variables:

§ Dividing,	we	get:

§ Why	is	this	at	all	helpful?

§ Lets	us	build	one	conditional	from	its	reverse
§ Often	one	conditional	is	tricky	but	the	other	one	is	simple
§ Foundation	of	many	systems	we’ll	see	later	(e.g.	ASR,	MT)

§ In	the	running	for	most	important	AI	equation!

That’s	my	rule!

Independence

§ Two	variables	are	independent in	a	joint	distribution	if:

§ Says	the	joint	distribution	factors into	a	product	of	two	simple	ones
§ Usually	variables	aren’t	independent!

§ Can	use	independence	as	a	modeling	assumption
§ Independence	can	be	a	simplifying	assumption
§ Empirical		joint	distributions:	at	best	“close”	to	independent
§ What	could	we	assume	for	{Weather,	Traffic,	Cavity}?

§ Independence	is	like	something	from	CSPs:	what?
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© Daniel S. Weld 58

Independence
Tr

ue

B

A A Ù B

P(AÙB) = P(A)P(B)

Example:	Independence

§ N	fair,	independent	coin	flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5
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Example:	Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

P2(T,W ) = P (T )P (W )

≠

Conditional	Independence
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Conditional	Independence

§ Unconditional	(absolute)	independence	very	rare

§ Conditional	independence is	our	most	basic	and	robust	form	
of	knowledge	about	uncertain	environments.

§ X	is	conditionally	independent	of	Y	given	Z			(written																					)

if	and	only	if:

or,	equivalently,	if	and	only	if

© Daniel S. Weld 63

Conditional	Independence

Are A & B independent?   P(A|B)  ?  P(A)

A
A Ù B

B

<

P(A)=(.25+.5)/2 
= .375

P(B)= .75

P(A|B)=(.25+.25+.5)/3
=.3333
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© Daniel S. Weld 64

A,	B	Conditionally	Independent	Given	C

P(A|B,C) = P(A|C)               C = striped

P(A|¬C)   =.5 
P(A|B,¬C)=.5

AÙC         AÙBÙC

BÙC

Conditional	Independence
§ What	about	this	domain:

§ Fire
§ Smoke
§ Alarm F

S

A
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Conditional	Independence

§ What	about	this	domain:
§ Traffic
§ Umbrella
§ Raining

R

U T

What	is	Conditional	Independence?

68
Slay the Basilisk!http://harrypotter.wikia.com/

I am a BIG joint 
distribution!
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Probability	Recap
§ Conditional	probability

§ Product	rule

§ Chain	rule	

§ Bayes	rule

§ X,	Y	independent	if	and	only	if:

§ X	and	Y	are	conditionally	independent	given	Z:																										
if	and	only	if:

Markov	Models
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Reasoning	over	Time	or	Space

§ Often,	we	want	to	reason	about	a	sequence of	observations
§ Speech	recognition
§ Robot	localization
§ User	attention
§ Medical	monitoring

§ Need	to	introduce	time	(or	space)	into	our	models

Markov	Models

§ Value	of	X	at	a	given	time	is	called	the	state

§ Parameters:	called	transition	probabilities	or	dynamics,	specify	how	the	
state	evolves	over	time	(also,	initial	state	probabilities)

§ Stationarity assumption:	transition	probabilities the	same	at	all	times
§ Means				P(X5 |	X4)	=	P(X12 |	X11)					etc.

§ Same	as	MDP	transition	model,	but	no	choice	of	action

X2X1 X3 X4
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Joint	Distribution	of	a	Markov	Model

§ Joint	distribution:

§ More	generally:

§ Questions	to	be	resolved:
§ Does	this	indeed	define	a	joint	distribution?
§ Can	every	joint	distribution	be	factored	this	way,	or	are	we	making	some	assumptions	
about	the	joint	distribution	by	using	this	factorization?

X2X1 X3 X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1)

Chain	Rule	and	Markov	Models

§ From	the	chain	rule,	every joint	distribution	over																																	can	be	written	as:

§ And,	if	we	assume	that
and

This	formula	simplifies	to

X2X1 X3 X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

X1, X2, X3, X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X1, X2)P (X4|X1, X2, X3)

X4 ?? X1, X2 | X3X3 ?? X1 | X2
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Chain	Rule	and	Markov	Models

§ From	the	chain	rule,	every	joint	distribution	over																																									can	be	written	as:

§ So,	if	we	assume	that	for	all	t:	

We	get

X2X1 X3 X4

Xt ?? X1, . . . , Xt�2 | Xt�1

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|Xt�1)

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|X1, X2, . . . , Xt�1)

X1, X2, . . . , XT


