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CSE	473:	Artificial	Intelligence

Probability	Review…àMarkov	Models

Daniel	Weld
University	of	Washington

[These	slides	were	created	by	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	http://ai.berkeley.edu.]

Probabilistic	Inference

§ Probabilistic	inference	=	
“compute	a	desired	probability	from	other	known	
probabilities	(e.g.	conditional	from	joint)”

§ We	generally	compute	conditional	probabilities	
§ P(on	time	|	no	reported	accidents)	=	0.90
§ These	represent	the	agent’s	beliefs given	the	evidence

§ Probabilities	change	with	new	evidence:
§ P(on	time	|	no	accidents,	5	a.m.)	=	0.95
§ P(on	time	|	no	accidents,	5	a.m.,	raining)	=	0.80
§ Observing	new	evidence	causes	beliefs	to	be	updated
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Inference	by	Enumeration
§ General	case:

§ Evidence	variables:	
§ Query*	variable:
§ Hidden	variables: All	variables

*	Works	fine	with	
multiple	query	
variables,	too

§ We	want:

§ Step	1:	Select	the	
entries	consistent	
with	the	evidence

§ Step	2:	Sum	out	H	to	get	joint	
of	Query	and	evidence

§ Step	3:	Normalize

⇥ 1

Z

What	is	Conditional	Independence?

68
Slay the Basilisk!http://harrypotter.wikia.com/

I am a BIG joint 
distribution!
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Probability	Recap
§ Conditional	probability

§ Product	rule

§ Chain	rule	

§ Bayes	rule

§ X,	Y	independent	if	and	only	if:

§ X	and	Y	are	conditionally	independent	given	Z:																										
if	and	only	if:

Markov	Models
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Reasoning	over	Time	or	Space

§ Often,	we	want	to	reason	about	a	sequence of	observations
§ Speech	recognition
§ Robot	localization
§ User	attention
§ Medical	monitoring

§ Need	to	introduce	time	(or	space)	into	our	models

Markov	Models

§ Value	of	X	at	a	given	time	is	called	the	state

§ Parameters:	called	transition	probabilities	or	dynamics,	specify	how	the	
state	evolves	over	time	(also,	initial	state	probabilities)

§ Stationarity assumption:	transition	probabilities the	same	at	all	times
§ Means				P(X5 |	X4)	=	P(X12 |	X11)					etc.

§ Same	as	MDP	transition	model,	but	no	choice	of	action

X2X1 X3 X4
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Joint	Distribution	of	a	Markov	Model

§ Joint	distribution:

§ More	generally:

§ Questions	to	be	resolved:
§ Does	this	indeed	define	a	joint	distribution?
§ Can	every	joint	distribution	be	factored	this	way,	or	are	we	making	some	assumptions	
about	the	joint	distribution	by	using	this	factorization?

X2X1 X3 X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1)

Chain	Rule	and	Markov	Models

§ From	the	chain	rule,	every joint	distribution	over																																	can	be	written	as:

§ And,	if	we	assume	that
and

This	formula	simplifies	to

X2X1 X3 X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

X1, X2, X3, X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X1, X2)P (X4|X1, X2, X3)

X4 ?? X1, X2 | X3X3 ?? X1 | X2
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Chain	Rule	and	Markov	Models

§ From	the	chain	rule,	every	joint	distribution	over																																									can	be	written	as:

§ So,	if	we	assume	that	for	all	t:	

We	get

X2X1 X3 X4

Xt ?? X1, . . . , Xt�2 | Xt�1

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|Xt�1)

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|X1, X2, . . . , Xt�1)

X1, X2, . . . , XT

Implied	Conditional	Independencies

§ We	assumed:																																	and

§ Do	we	also	have ?
§ Yes!	
§ Proof:

X2X1 X3 X4

X4 ?? X1, X2 | X3X3 ?? X1 | X2

X1 ?? X3, X4 | X2

P (X1 | X2, X3, X4) =
P (X1, X2, X3, X4)

P (X2, X3, X4)

=
P (X1)P (X2 | X1)P (X3 | X2)P (X4 | X3)P
x1

P (x1)P (X2 | x1)P (X3 | X2)P (X4 | X3)

=
P (X1, X2)

P (X2)

= P (X1 | X2)
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Markov	Models	Recap

§ Explicit	assumption	for	all			t :
§ Consequence,	joint	distribution	can	be	written	as:	

§ Implied	conditional	independencies:		
Past independent	of	future given	the	present
i.e.,	if																					then:

§ Additional	explicit	assumption:																									is	the	same	for	all	t

Xt ?? X1, . . . , Xt�2 | Xt�1

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1)

Xt1 ?? Xt3 | Xt2t1 < t2 < t3

P (Xt | Xt�1)

Example	Markov	Chain:	Weather

§ States:	X	=	{rain,	sun}

Another	way	of	representing	the	same	CPT

sun

rain

sun

rain

0.1
0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9
sun rain 0.1
rain sun 0.3
rain rain 0.7

§ Initial	distribution:	1.0	sun

§ CPT	P(Xt |	Xt-1):
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Example	Markov	Chain:	Weather

§ Initial	distribution:	1.0	sun

§ What	is	the	probability	distribution	after	one	step?

sun

rain

sun

rain

0.1
0.9

0.7

0.3

P(X3=sun)     =       P(X3=sun | X2 = sun) P(X2 = sun) +
P(X3=sun | X2 = rain) P(X2 = rain) 

=       0.9 * 0.9 + 0.3 * 0.1  =  0.84

Mini-Forward	Algorithm

§ Question:	What’s	P(X)	on	some	day	t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (x
t�1, xt

)

=
X

xt�1

P (x
t

| x
t�1)P (x

t�1)
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Example	Run	of	Mini-Forward	Algorithm

§ From	initial	observation	of	sun

§ From	initial	observation	of	rain

§ From	yet	another	initial	distribution	P(X1):

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X¥)
…

§ Stationary	distribution:
§ The	distribution	we	end	up	with	is	called	
the	stationary	distribution	 of	the	
chain

§ It	satisfies

Stationary	Distributions

§ For	most	chains:
§ Influence	of	the	initial	distribution	
gets	less	and	less	over	time.

§ The	distribution	we	end	up	in	is	
independent	of	the	initial	distribution

P1(X) = P1+1(X) =
X

x

P (X|x)P1(x)

P1
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Example:	Stationary	Distributions

§ Question:	What’s	P(X)	at	time	t	=	infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9
sun rain 0.1
rain sun 0.3
rain rain 0.7

P1(sun) = P (sun|sun)P1(sun) + P (sun|rain)P1(rain)

P1(rain) = P (rain|sun)P1(sun) + P (rain|rain)P1(rain)

P1(sun) = 0.9P1(sun) + 0.3P1(rain)

P1(rain) = 0.1P1(sun) + 0.7P1(rain)

P1(sun) = 3P1(rain)

P1(rain) = 1/3P1(sun)

P1(sun) + P1(rain) = 1

P1(sun) = 3/4

P1(rain) = 1/4Also:

Video	of	Demo	Ghostbusters	Basic	Dynamics
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Video	of	Demo	Ghostbusters	Circular	Dynamics

Video	of	Demo	Ghostbusters	Whirlpool	Dynamics
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Application	of	Stationary	Distribution:	Web	Link	Analysis

§ PageRank	over	a	web	graph
§ Each	web	page	is	a	state
§ Initial	distribution:	uniform	over	pages
§ Transitions:

§ With	prob.	c,	uniform	jump	to	a
random	page	(dotted	lines,	not	all	shown)

§ With	prob.	1-c,	follow	a	random
outlink (solid	lines)

§ Stationary	distribution
§ Will	spend	more	time	on	highly	reachable	pages
§ E.g.	many	ways	to	get	to	the	Acrobat	Reader	download	page
§ Somewhat	robust	to	link	spam
§ Google	1.0	returned	the	set	of	pages	containing	all	your	

keywords	in	decreasing	rank,	now	all	search	engines	use	link	
analysis	along	with	many	other	factors	(rank	actually	getting	
less	important	over	time)


