CSE 473: Artificial Intelligence Probability Review... HMMs

University of Washington

Topics from 30,000'

- We' re done with Part I Search and Planning!
- Part II: Probabilistic Reasoning
- Diagnosis
- Speech recognition
- Tracking objects
- Robot mapping
- Genetics
- Error correcting codes
- ... lots more!

- Part III: Machine Learning

Outline

- Probability

- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away: green

- Sensors are noisy, but we know P(Color | Distance)

$P($ red \| 3)	P (orange \| 3)	P (yellow \| 3)	P (green \| 3)
0.05	0.15	0.5	0.3

[Demo: Ghostbuster - no probability (L12D1)]

Video of Demo Ghostbuster - No probability

Uncertainty

- General situation:
- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)

- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables

- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
- $\mathrm{R}=\mathrm{ls}$ it raining?
- $\mathrm{T}=$ Is it hot or cold?
- $\mathrm{D}=$ How long will it take to drive to work?
- L = Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
- R in $\{$ true, false $\}$ (often write as $\{+r,-r\}$)
- T in \{hot, cold\}
- D in $[0, \infty)$
- L in possible locations, maybe $\{(0,0),(0,1), \ldots\}$

Probability Distributions

- Associate a probability with each value

- Temperature:

$P(T)$	
T	P
hot	0.5
cold	0.5

- Weather:

What is....?

Probability Distributions

- Unobserved random variables have distributions

$P(T)$	
T	P
hot	0.5
cold	0.5

$P(W)$	
W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

- A distribution is a TABLE of probabilities of values

Shorthand notation:

$$
\begin{aligned}
& P(\text { hot })=P(T=h o t) \\
& P(\text { cold })=P(T=\text { cold }) \\
& P(\text { rain })=P(W=\text { rain }), \\
& \cdots \\
& \text { OK if all domain entries are unique }
\end{aligned}
$$

- A probability (lower case value) is a single number

$$
P(W=\operatorname{rain})=0.1
$$

- Must have: $\quad \forall x P(X=x) \geq 0 \quad$ and $\quad \sum_{x} P(X=x)=1$

Joint Distributions

- A joint distribution over a set of random variables: $X_{1}, X_{2}, \ldots X_{n}$ specifies a probability for each assignment (or outcome):

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)
\end{aligned}
$$

- Must obey:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right) \geq 0
$$

$$
\sum_{\left(x_{1}, x_{2}, \ldots x_{n}\right)} P\left(x_{1}, x_{2}, \ldots x_{n}\right)=1
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of joint distribution if n variables with domain sizes d ?
- For all but the smallest distributions, impractical to write out!

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
- (Random) variables with domains
- Joint distributions: say whether assignments (called "outcomes") are likely
- Normalized: sum to 1.0

Distribution over T,W

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Ideally: only certain variables directly interact

Constraint over T,W

- Constraint satisfaction problems:
- Variables with domains
- Constraints: state whether assignments are possible
- Ideally: only certain variables directly interact

T	W	P
hot	sun	T
hot	rain	F
cold	sun	F
cold	rain	T

Events

- An event is a set E of outcomes

$$
P(E)=\sum_{\left(x_{1} \ldots x_{n}\right) \in E} P\left(x_{1} \ldots x_{n}\right)
$$

- From a joint distribution, we can calculate the probability of any event
- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Typically, the events we care about are partial assignments, like $\mathrm{P}(\mathrm{T}=\mathrm{hot})$

Quiz: Events

- $P(+x,+y)$?
- $P(+x)$?

X	Y	P
$+x$	$+y$	0.2
$+x$	$-y$	0.3
$-x$	$+y$	0.4
$-x$	$-y$	0.1

- P(-y OR +x) ?

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$
P\left(X_{1}=x_{1}\right)=\sum_{x_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

Quiz: Marginal Distributions

Conditional Probabilities

- A simple relation between joint and marginal probabilities
- In fact, this is taken as the definition of a conditional probability

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

$$
P(T, W)
$$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
\begin{aligned}
& P(W=s \mid T=c)=\frac{P(W=s, T=c)}{P(T=c)}=\frac{0.2}{0.5}=0.4 \\
& \\
& =P(W=s, T=c)+P(W=r, T=c) \\
&
\end{aligned}
$$

Quiz: Conditional Probabilities

- $P(+x \mid+y) ?$
$P(X, Y)$

X	Y	P
$+x$	$+y$	0.2
$+x$	$-y$	0.3
$-x$	$+y$	0.4
$-x$	$-y$	0.1

- $P(-x \mid+y)$?
- $P(-y \mid+x) ?$

Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution

$$
P(T, W)
$$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional Distribs - The Slow Way...

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
\begin{aligned}
P(W=s \mid T=c) & =\frac{P(W=s, T=c)}{P(T=c)} \\
& =\frac{P(W=s, T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.2}{0.2+0.3}=0.4 \\
P(W=r \mid T=c) & =\frac{P(W=r, T=c)}{P(T=c)} \\
& =\frac{P(W=r, T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.3}{0.2+0.3}=0.6
\end{aligned}
$$

Normalization Trick

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint
probabilities matching the $\xrightarrow{\text { evidence }}$

NORMALIZE the
selection (make it sum to one)

T	W	P
cold	sun	0.2
cold	rain	0.3

$$
\begin{aligned}
P(W=r \mid T=c) & =\frac{P(W=r, T=c)}{P(T=c)} \\
& =\frac{P(W=r, T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.3}{0.2+0.3}=0.6
\end{aligned}
$$

Normalization Trick

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities matching the evidence

NORMALIZE the
selection (make it sum to one)

- Why does this work? Sum of selection is $\mathrm{P}($ evidence)! ($\mathrm{P}(\mathrm{T}=\mathrm{c})$, here)

$$
P\left(x_{1} \mid x_{2}\right)=\frac{P\left(x_{1}, x_{2}\right)}{P\left(x_{2}\right)}=\frac{P\left(x_{1}, x_{2}\right)}{\sum_{x_{1}} P\left(x_{1}, x_{2}\right)}
$$

Quiz: Normalization Trick

- $P(X \mid Y=-y)$?

$P(X, Y)$		
X	Y	P
+x	+y	0.2
+x	-y	0.3
-x	+y	0.4
-x	-y	0.1

SELECT the joint probabilities matching the evidence

NORMALIZE the
selection (make it sum to one)

To Normalize

- Dictionary: "To bring or restore to anormal condition"

All entries sum to ONE

- Procedure:
- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z
- Example 1

W	P	Normalize	W	P
sun	0.2		sun	0.4
rain	0.3	$Z=0.5$	rain	0.6

- Example 2

T	W	P	Normalize$Z=50$	T	W	P
hot	sun	20		hot	sun	0.4
hot	rain	5		hot	rain	0.1
cold	sun	10		cold	sun	0.2
cold	rain	15		cold	rain	0.3

Probabilistic Inference

- Probabilistic inference =
"compute a desired probability from other known probabilities (e.g. conditional from joint)"
- We generally compute conditional probabilities
- P(on time \| no reported accidents) $=0.90$
- These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
- P(on time | no accidents, 5 a.m.) $=0.95$
- $P($ on time \mid no accidents, 5 a.m., raining $)=0.80$

- Observing new evidence causes beliefs to be updated

Probabilistic Inference in Ghostbusters

- A ghost is in the grid somewhere
- Noisy Sensor readings tell approx how close a square is to the ghost
- 1 or 2 away: orange
- Etc.

.05	.05	.05	.05	.05
.05	.05	.05	.05	.05
.05	.05	.05	.05	.05
.05	.05	.05	.05	\ldots

- Sensors are noisy, but we know P(Color | Distance)

$P($ red \| 3)	P (orange \| 3)	P (yellow \| 3)	$P($ green \| 3)
0.05	0.15	0.5	0.3

Probabilistic Inference in Ghostbusters

- A ghost is in the grid somewhere
- Noisy Sensor readings tell approx how close a square is to the ghost
- 1 or 2 away: orange
- Etc.

$?$	$?$	$?$	$?$	$?$
$?$	$?$	$?$	$?$	$?$
$?$	$?$	$?$	$?$	$?$
$?$	$?$	$?$	$?$	\because

How update the probabilities?

Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:
$\left.\begin{array}{l}E_{1} \ldots E_{k}=e_{1} \ldots e_{k} \\ Q \\ H_{1} \ldots H_{r}\end{array}\right\} \begin{gathered}X_{1}, X_{2}, \ldots X_{n} \\ \text { All variables }\end{gathered}$
- Step 2: Sum out H to get joint of Query and evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}}_{X_{1}, X_{2} \ldots X_{n}})
$$

- Step 1: Select the entries consistent with the evidence

- Step 3: Normalize

$Z=\sum_{q} P\left(Q, e_{1} \cdots e_{k}\right)$ $P\left(Q \mid e_{1} \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)$

Inference by Enumeration

- $P(W=s u n)$?
- $\mathrm{P}(\mathrm{W}=$ sun $\mid \mathrm{S}=$ winter $)$?
- $\mathrm{P}(\mathrm{W}=$ sun $\mid \mathrm{S}=$ winter, $\mathrm{T}=$ hot $)$?

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- Computational problems?
- Worst-case time complexity O(dn)
- Space complexity $O\left(d^{n}\right)$ to store the joint distribution

Don't be Fooled

- It may look cute...

Don't be Fooled

- It gets big...

35

The Product Rule

- Sometimes have conditional distributions but want the joint

$$
P(y) P(x \mid y)=P(x, y) \longleftrightarrow P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

The Product Rule

$$
P(y) P(x \mid y)=P(x, y)
$$

- Example:

$$
P(D \mid W)
$$

The Chain Rule

- More generally, can always write any joint distribution as an incremental product of conditional distributions

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
\end{aligned}
$$

Bayes Rule

Bayes' Rule

- Two ways to factor a joint distribution over two variables:

$$
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)
$$

- Dividing, we get:

$$
P(x \mid y)=\frac{P(y \mid x)}{P(y)} P(x)
$$

- Why is this at all helpful?
- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems we'll see later (e.g. ASR, MT)

- In the running for most important Al equation!

Inference with Bayes' Rule

- Example: Diagnostic probability from causal probability:

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

- Example:
- M: meningitis, S: stiff neck

$$
\left.\begin{array}{l}
P(+m)=0.0001 \\
P(+s \mid+m)=0.8 \\
P(+s \mid-m)=0.01
\end{array}\right] \begin{aligned}
& \text { Example } \\
& \text { givens }
\end{aligned}
$$

$P(+m \mid+s)=\frac{P(+s \mid+m) P(+m)}{P(+s)}=\frac{P(+s \mid+m) P(+m)}{P(+s \mid+m) P(+m)+P(+s \mid-m) P(-m)}=\frac{0.8 \times 0.0001}{0.8 \times 0.0001+0.01 \times 0.999}$

- Note: posterior probability of meningitis still very small =0.0079
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

- Given:

$$
P(D \mid W)
$$

$P(W)$			
R	P		
sun	0.8		
rain	0.2		
wet	sun		
dry	sun		
wet	0.1		
dry	rain		
	0.7	\quad	rain
:---:			

- What is $P(W=$ rain | dry $)$?
$P($ cause \mid effect $)=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}$

Ghostbusters, Revisited

- Let's say we have two distributions:
- Prior distribution over ghost location: P(G)
- Let's say this is uniform
- Sensor reading model: $P(R \mid G)$
- Given: we know what our sensors do
- R = reading color measured at $(1,1)$
- E.g. $P(R=$ yellow $\mid G=(1,1))=0.1$
- We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule:

$$
P(g \mid r) \propto P(r \mid g) P(g)
$$

Video of Demo Gho ${ }^{\text {e }}$ usters with Probability

Independence

- Two variables are independent in a joint distribution if:

$$
\begin{array}{cc}
P(X, Y)=P(X) P(Y) & X \Perp Y \\
\forall x, y P(x, y)=P(x) P(y) &
\end{array}
$$

- Says the joint distribution factors into a product of two simple ones
- Usually variables aren't independent!
- Can use independence as a modeling assumption
- Independence can be a simplifying assumption
- Empirical joint distributions: at best "close" to independent

- What could we assume for \{Weather, Traffic, Cavity\}?
- Independence is like something from CSPs: what?

Independence

