
11/9/16

1

Approximate	Q-Learning

Dan	Weld	/	University	of	Washington
[Many	slides	taken	from	Dan	Klein	and	Pieter	Abbeel /	CS188	Intro	to	AI	at	UC	Berkeley	– materials	available	at	http://ai.berkeley.edu.]

Q	Learning
Forall s,	a	

Initialize	Q(s,	a)	=	0				
Repeat	Forever

Where	are	you?		s.
Choose	some	action	a
Execute	it	in	real	world: (s,	a,	r,	s’)
Do	update:

} Equivalently

11/9/16

2

Q	Learning
Forall s,	a	

Initialize	Q(s,	a)	=	0				
Repeat	Forever

Where	are	you?		s.
Choose	some	action	a
Execute	it	in	real	world: (s,	a,	r,	s’)
Do	update:

Example:	Pacman
Let’s	say	we	discover	
through	experience	
that	this	state	is	bad:

Or	even	this	
one!

11/9/16

3

Q-learning,	no	features,	
50	learning	trials

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Q-learning,	no	features,	
1000	learning	trials:

QuickTime™ and a
GIF decompressor

are needed to see this picture.

11/9/16

4

Feature-Based	Representations
Soln:	describe	states	w/	vector	of	features (aka	“properties”)

– Features	= functions	from	states	to	R	(often	0/1)	
capturing	important	properties	of	the	state

– Examples:
• Distance	to	closest	ghost	or	dot
• Number	of	ghosts
• 1	/	(dist	to	dot)2
• Is	Pacman in	a	tunnel?	(0/1)
……	etc.

• Is	state	the	exact	state	on	this	slide?

– Can	also	describe	a	q-state	(s,	a)	with	features
(e.g.	action	moves	closer	to	food)

How	to	use	features?

V(s)	=	g(f1(s),	f2(s),	…,	fn(s))

Using	features	we	can	represent	V	and/or	Q	as	follows:

Q(s,a)	=	g(f1(s,a),	f2(s,a),	…,	fn(s,a))

What	should	we	use	for	g?	
(and	f)?

11/9/16

5

Linear	Combination	

• Using	a	feature	representation,	we	can	write	a	q	function	
(or	value	function)	for	any	state	using	a	few	weights:

• Advantage:	our	experience	is	summed	up	in	a	few	
powerful	numbers

• Disadvantage:	states	sharing	features	may	actually	have	
very	different	values!

Approximate	Q-Learning

• Q-learning	with	linear	Q-functions:

• Intuitive	interpretation:
– Adjust	weights	of	active	features
– E.g.,	if	something	unexpectedly	bad	happens,	blame	the	

features	that	were	on:	disprefer all	states	with	that	
state’s	features

• Formal	justification:	in	a	few	slides!

Exact	Q’s

Approximate	
Q’s

11/9/16

6

Example:	Pacman Features
𝑄 𝑠, 𝑎 = 	𝑤(𝑓*+, 𝑠, 𝑎 + 𝑤.𝑓/0,(𝑠, 𝑎)

𝑓*+, 𝑠, 𝑎 = 	
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡𝑜	𝑐𝑙𝑜𝑠𝑒𝑠𝑡	𝑓𝑜𝑜𝑑	𝑎𝑓𝑡𝑒𝑟	𝑡𝑎𝑘𝑖𝑛𝑔	𝑎

𝑓/0, 𝑠, 𝑎 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡𝑜	𝑐𝑙𝑜𝑠𝑒𝑠𝑡	𝑔ℎ𝑜𝑠𝑡	𝑎𝑓𝑡𝑒𝑟	𝑡𝑎𝑘𝑖𝑛𝑔	

𝑓*+, 𝑠, 𝑁𝑂𝑅𝑇𝐻 = 0.5

𝑓/0, 𝑠, 𝑁𝑂𝑅𝑇𝐻 = 	1.0

Example:	Q-Pacman

[Demo:	
approximate	Q-
learning	pacman

α	=	0.004

11/9/16

7

Video	of	Demo	Approximate	Q-
Learning	-- Pacman

Sidebar:	Q-Learning	and	Least	Squares

11/9/16

8

0 200

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear	Approximation:	Regression

Prediction: Prediction:

Optimization:	Least	Squares

0 20
0

Error	or	“residual”

Prediction

Observation

11/9/16

9

Minimizing	Error

Approximate	q	update	
explained:

Imagine	we	had	only	one	point	x,	with	features	f(x),	target	value	y,	
and	weights	w:

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree	15	polynomial

Overfitting:	Why	Limiting	Capacity	Can	Help

11/9/16

10

Simple	Problem

21

Given:	Features	of	current	state
Predict:	Will	Pacman die	on	the	next	step?

Just	one	feature.	See	a	pattern?

22

§ Ghost	one	step	away,	pacman dies
§ Ghost	one	step	away,	pacman dies
§ Ghost	one	step	away,	pacman dies
§ Ghost	one	step	away,	pacman dies
§ Ghost	one	step	away,	pacman lives
§ Ghost	more	than	one	step	away,	pacman lives
§ Ghost	more	than	one	step	away,	pacman lives
§ Ghost	more	than	one	step	away,	pacman lives
§ Ghost	more	than	one	step	away,	pacman lives
§ Ghost	more	than	one	step	away,	pacman lives
§ Ghost	more	than	one	step	away,	pacman lives

Learn:	Ghost	one	step	away	à pacman dies!

11/9/16

11

What	if	we	add	more	features?

24

§ Ghost	one	step	away,	score	211,	pacman dies
§ Ghost	one	step	away,	score	341,	pacman dies
§ Ghost	one	step	away,	score	231,	pacman dies
§ Ghost	one	step	away,	score	121,	pacman dies
§ Ghost	one	step	away,	score	301,	pacman lives
§ Ghost	more	than	one	step	away,	score	205,	pacman lives
§ Ghost	more	than	one	step	away,	score	441,	pacman lives
§ Ghost	more	than	one	step	away,	score	219,	pacman lives
§ Ghost	more	than	one	step	away,	score	199,	pacman lives
§ Ghost	more	than	one	step	away,	score	331,	pacman lives
§ Ghost	more	than	one	step	away,	score	251,	pacman lives

Learn:	Ghost	one	step	away	AND	score	is	NOT	prime	number	à pacman dies!

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 1 polynomial

There’s	fitting,	and	there’s

11/9/16

12

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 2 polynomial

There’s	fitting,	and	there’s

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

11/9/16

13

Approximating	Q	Function	
• Linear	Approximation
• Could	also	use	Deep	Neural	Network

– https://www.nervanasys.com/demystifying-deep-
reinforcement-learning/

Q(s,a)

Deepmind Atari

https://www.youtube.com/watch?v=V1eYniJ0Rnk

11/9/16

14

DQN	Results	on	Atari
DQN Results in Atari

Slide	adapted	from	David	Silver

Approximating	the	Q	Function	
Linear	Approximation

Q

f1(s,a)
f2(s,a)

fm(s,a)

Q
f1(s,a)
f2(s,a)

fm(s,a)

Neural	Approximation	(nonlinear) h(z) = 1

1+ e−z

0
0

1

z

ah(z)

11/9/16

15

Deep	Representations
Deep Representations

I A deep representation is a composition of many functions

x

//
h1

// ... //
h

n

//
y

//
l

w1

OO

... wn

OO

I Its gradient can be backpropagated by the chain rule

@l
@x

@l
@h1

@h1
@xoo

@h1
@w1
✏✏

...

@h2
@h1oo @l

@h
n

@h
n

@h
n�1oo

@h
n

@w
n

✏✏

@l
@y

@y
@h

noo

@l
@w1

... @l
@wn

Slide	adapted	from	David	Silver

hidden

output

inputi

j

k

vij

[X1 ,										X2	,												X3] ze
a

-+
=
1

1

0
0

1

z

a

[Y1 ,													Y2]

wjk

• Multiple	Layers
• Feed	Forward
• Connected Weights
• 1-of-N	Output

ij
i

iwxz j å=

Multi	Layer	Perceptron

11/9/16

16

Training	via	Stochastic	Gradient	Descent
Training Neural Networks by Stochastic Gradient Descent

I Sample gradient of expected loss L(w) = E [l]

@l

@w
⇠ E

@l

@w

�
=

@L(w)

@w

I Adjust w down the sampled gradient

�w / @l

@w

!"#$%"&'(%")*+,#'-'!"#$%%" (%")*+,#'.+/0+,#

� !"#$%&'('%$&#()&*+$,*$#&&-&$$$$."'%"$
'*$%-/0'*,('-*$.'("$("#$1)*%('-*$
,22&-3'/,(-& %,*$0#$)+#4$(-$
%&#,(#$,*$#&&-&$1)*%('-*$$$$$$$$$$$$$

� !"#$2,&(',5$4'11#&#*(',5-1("'+$#&&-&$
1)*%('-*$$$$$$$$$$$$$$$$6$("#$7&,4'#*($
%,*$*-.$0#$)+#4$(-$)24,(#$("#$
'*(#&*,5$8,&',05#+$'*$("#$1)*%('-*$
,22&-3'/,(-& 9,*4$%&'('%:;$$$$$$

<&,4'#*($4#+%#*($=>?

Slide	adapted	from	David	Silver

i

j

k

vij

wjk

• Minimize error of
calculated output

• Adjust weights
• Gradient	Descent

• Procedure
• Forward	Phase
• Backpropagation	
of errors

• For each sample,	
multiple	epochs

Aka	...	Backpropagation

11/9/16

17

Weight	Sharing	
Weight Sharing

Recurrent neural network shares weights between time-steps

y

t

y

t+1

... //
h

t

//

OO

h

t+1
//

OO

...

w

??

x

t

OO

w

==

x

t+1

OO

Convolutional neural network shares weights between local regions

w1

w1

w2

w2

x

h1

h2

Slide	adapted	from	David	Silver

Recap:	Approx Q-LearningQ-Learning

I Optimal Q-values should obey Bellman equation

Q

⇤(s, a) = E
s

0

r + � max

a

0
Q(s 0, a0)⇤ | s, a

�

I Treat right-hand side r + � max
a

0
Q(s 0, a0,w) as a target

I Minimise MSE loss by stochastic gradient descent

l =
⇣
r + � max

a

Q(s 0, a0,w) � Q(s, a,w)
⌘2

I Converges to Q

⇤ using table lookup representation
I But diverges using neural networks due to:

I Correlations between samples
I Non-stationary targets

Slide	adapted	from	David	Silver

11/9/16

18

Deep	Q-Networks	(DQN)	Experience	ReplayDeep Q-Networks (DQN): Experience Replay

To remove correlations, build data-set from agent’s own experience

s1, a1, r2, s2
s2, a2, r3, s3 ! s, a, r , s 0

s3, a3, r4, s4
...

s

t

, a
t

, r
t+1, st+1 ! s

t

, a
t

, r
t+1, st+1

Sample experiences from data-set and apply update

l =

✓
r + � max

a

0
Q(s 0, a0,w�) � Q(s, a,w)

◆2

To deal with non-stationarity, target parameters w� are held fixed

Slide	adapted	from	David	Silver

DQN	in	AtariDQN in Atari

I End-to-end learning of values Q(s, a) from pixels s

I Input state s is stack of raw pixels from last 4 frames

I Output is Q(s, a) for 18 joystick/button positions

I Reward is change in score for that step

Network architecture and hyperparameters fixed across all games

Slide	adapted	from	David	Silver

11/9/16

19

Deep	Mind	Resources

See	also:	http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf

That’s	all	for	Reinforcement	Learning!

• Very	tough	problem:	How	to	perform	any	task	well	in	
an	unknown,	noisy	environment!

• Traditionally	used	mostly	for	robotics,	but…

49

Reinforcement	
Learning	Agent

Data	(experiences	
with	environment)

Policy	(how	to	
act	in	the	future)

Google	DeepMind – RL	applied	to	data	center	power	usage

11/9/16

20

That’s	all	for	Reinforcement	Learning!

Lots	of	open	research	areas:
– How	to	best	balance	exploration	and	exploitation?
– How	to	deal	with	cases	where	we	don’t	know	a	good	
state/feature	representation?	

50

Reinforcement	
Learning	Agent

Data	(experiences	
with	environment)

Policy	(how	to	
act	in	the	future)

Conclusion
• We’re	done	with	Part	I:	Search	

and	Planning!

• We’ve	seen	how	AI	methods	can	
solve	problems	in:
– Search
– Constraint	Satisfaction	Problems
– Games
– Markov	Decision	Problems
– Reinforcement	Learning

• Next	up:	Part	II:	Uncertainty	and	
Learning!

