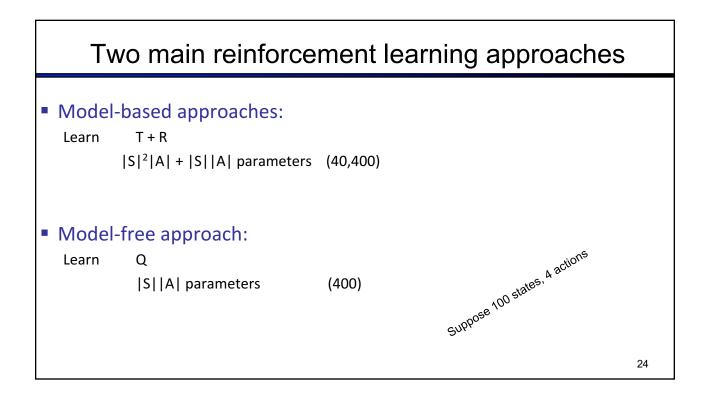
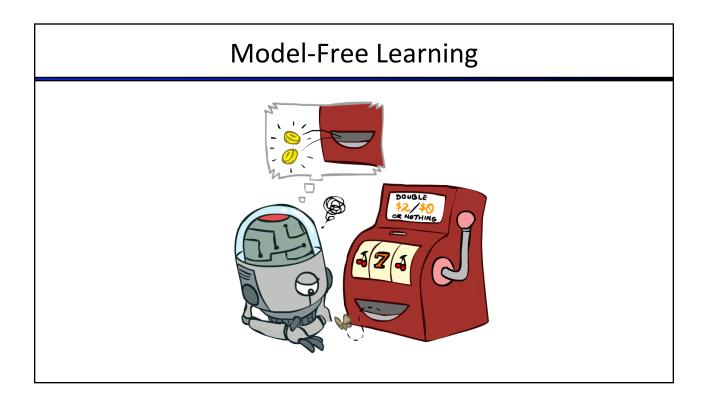


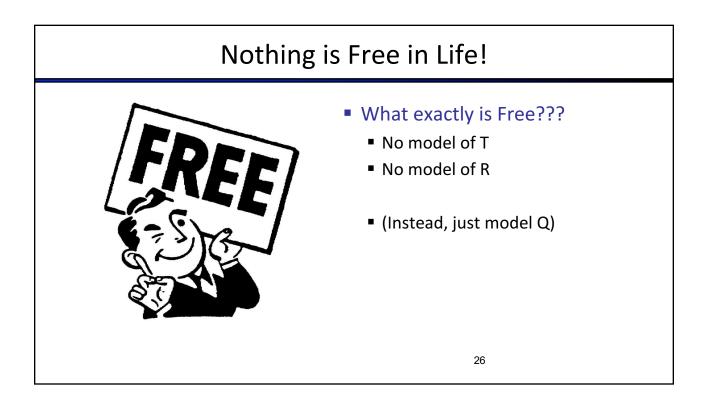
Two main reinforcement learning approaches

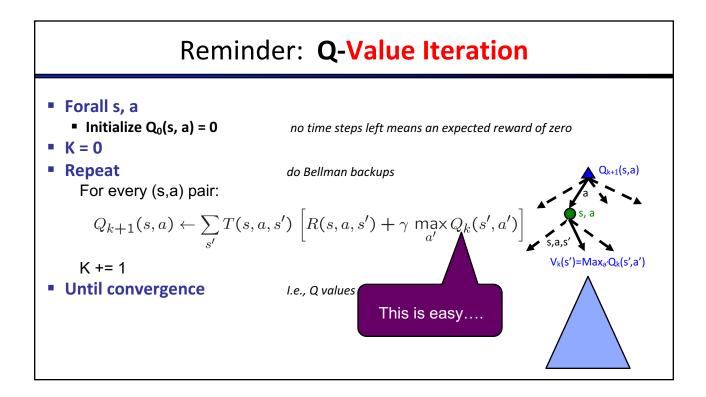
Model-based approaches:

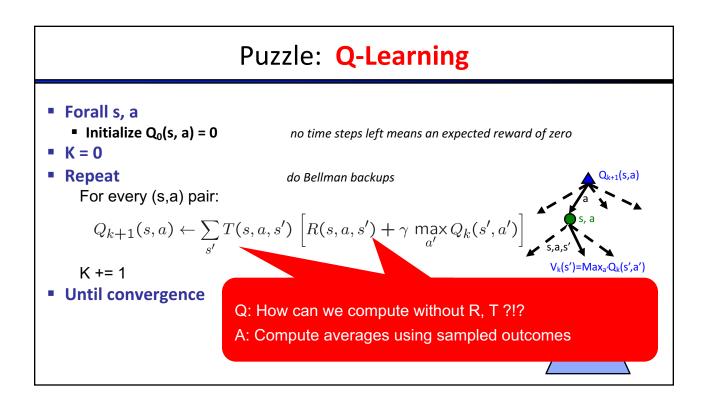
- explore environment & learn model, T=P(s'|s,a) and R(s,a), (almost) everywhere
- use model to plan policy, MDP-style
- approach leads to strongest theoretical results
- often works well when state-space is manageable
- Model-free approach:
 - don't learn a model; learn value function or policy directly
 - weaker theoretical results
 - often works better when state space is large



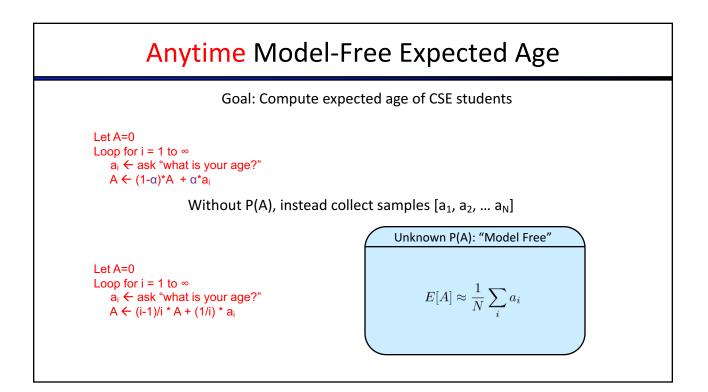


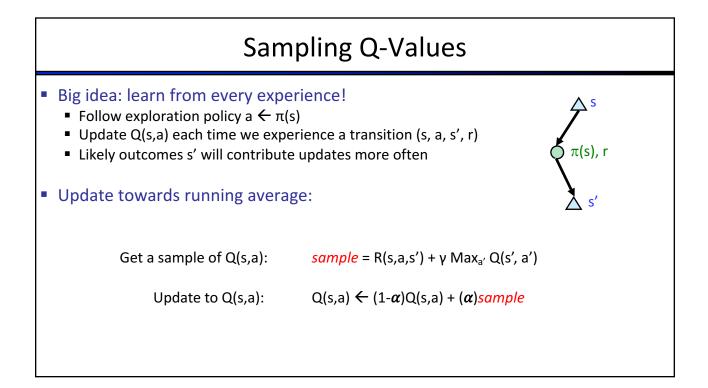


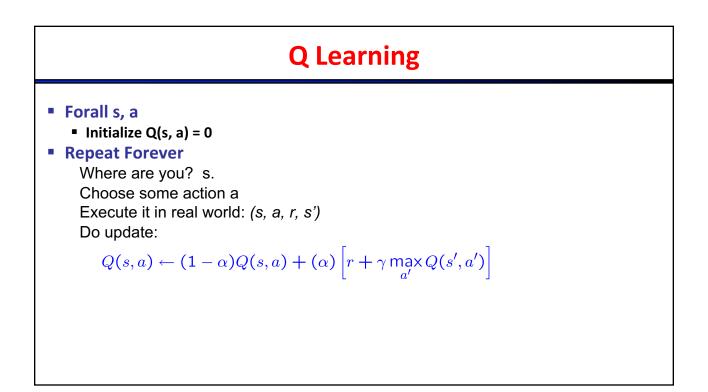


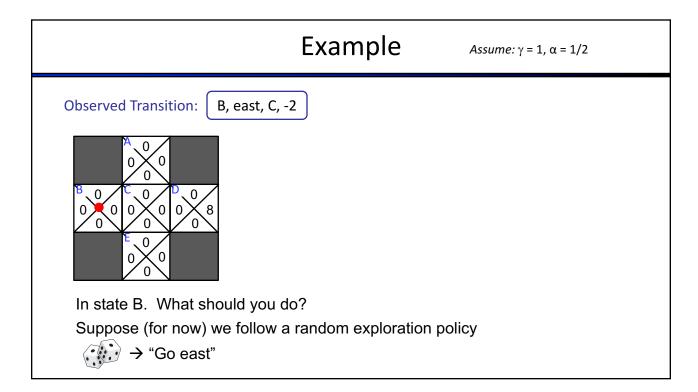


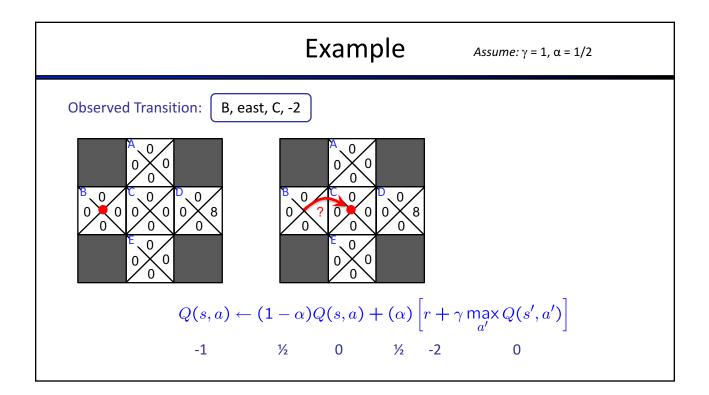


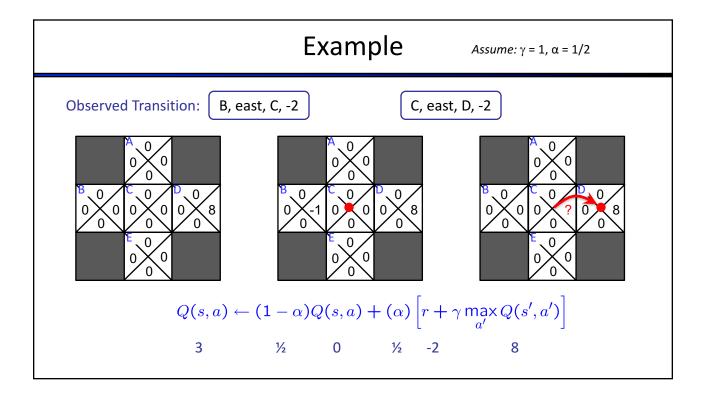


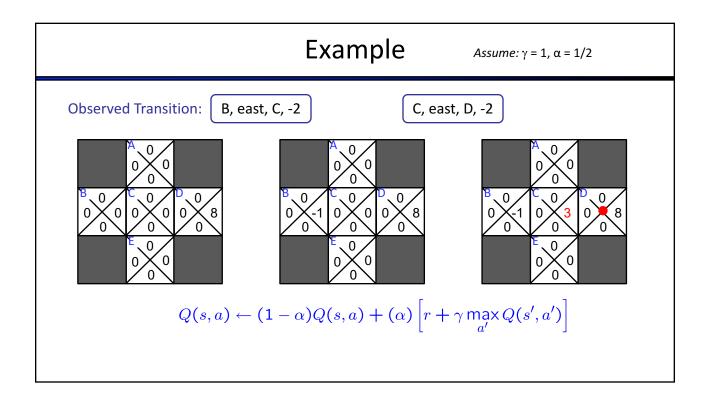






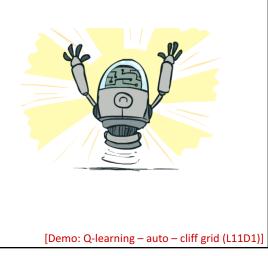


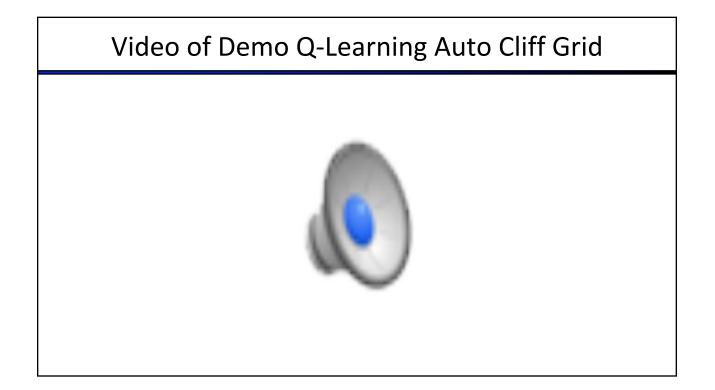


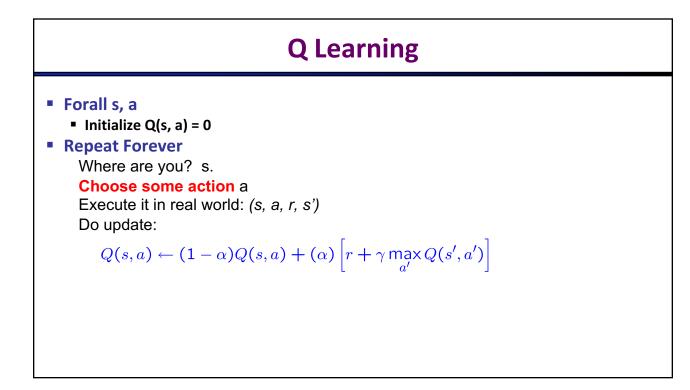


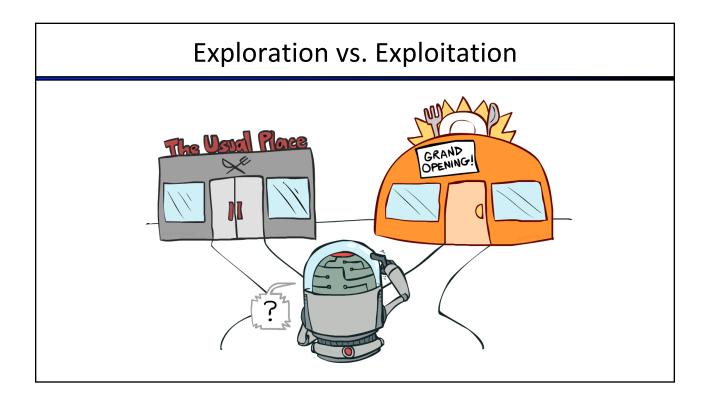
Q-Learning Properties

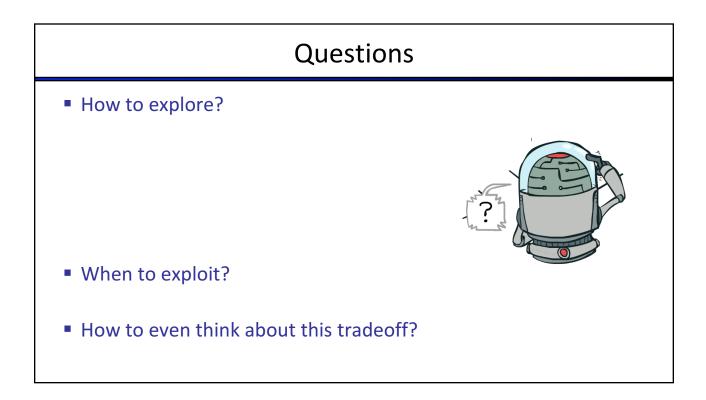
- Q-learning converges to optimal Q function (and hence *learns* optimal policy)
 - even if you're acting suboptimally!
 - This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually shrink the learning rate, α
 - ... but not decrease it too quickly
- And... if you want to *act* optimally
 - You have to switch from explore to exploit

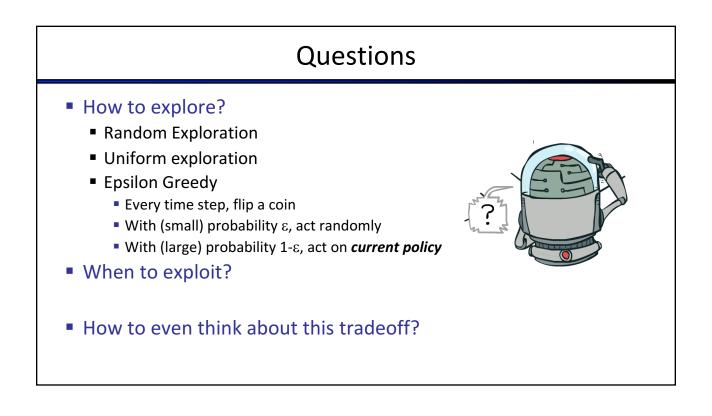












Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful sub-optimality, and optimal (expected) rewards Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal

Two	KINDS	of Regret
-----	-------	-----------

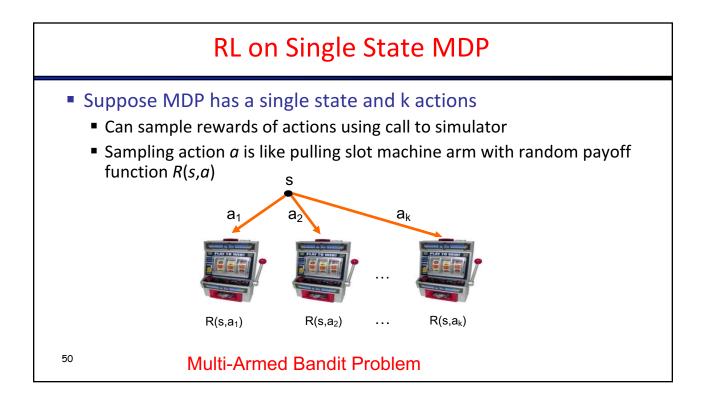
Cumulative Regret:

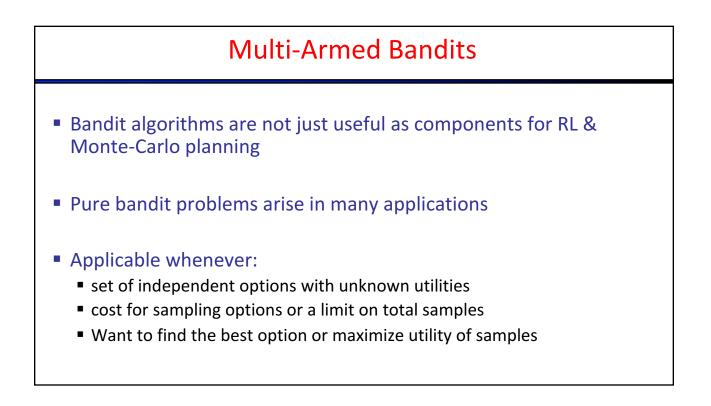
 achieve near optimal cumulative lifetime reward (in expectation)

Simple Regret:

 quickly identify policy with high reward (in expectation)

48





Multi-Armed Bandits: Example 1

Clinical Trials

- Arms = possible treatments
- Arm Pulls = application of treatment to inidividual
- Rewards = outcome of treatment
- Objective = maximize cumulative reward = maximize benefit to trial population (or find best treatment quickly)

