
1

CSE	473:	Artificial	Intelligence
Reinforcement	Learning

Dan	Weld/	University	of	Washington
[Many	slides	taken	from	Dan	Klein	and	Pieter	Abbeel /	CS188	Intro	to	AI	at	UC	Berkeley	– materials	available	at	http://ai.berkeley.edu.]

Three	Key	Ideas	for	RL

§ Model-based	vsmodel-free	learning
§ What	function	is	being	learned?

§ Approximating	the	Value	Function
§ Smaller	à easier	to	learn	&	better	generalization

§ Exploration-exploitation	tradeoff

2

23

Two main reinforcement learning approaches

§ Model-based approaches:
§ explore environment & learn model, T=P(s’|s,a) and R(s,a), (almost) everywhere
§ use model to plan policy, MDP-style
§ approach leads to strongest theoretical results
§ often works well when state-space is manageable

§ Model-free approach:
§ don’t learn a model; learn value function or policy directly
§ weaker theoretical results
§ often works better when state space is large

24

Two main reinforcement learning approaches

§ Model-based	approaches:
Learn	 T	+	R

|S|2|A|	+	|S||A|	parameters				(40,400)

§ Model-free	approach:
Learn	 Q

|S||A|	parameters (400)

3

Model-Free	Learning

Nothing	is	Free	in	Life!

§ What	exactly	is	Free???
§ No	model	of	T
§ No	model	of	R

§ (Instead,	just	model	Q)

26

4

Reminder:		Q-Value	Iteration

a

Qk+1(s,a)

s,	a

s,a,s’

’)as’,(kQa’Max)=s’(kV

§ Forall s,	a	
§ Initialize	Q0(s,	a)	=	0				 no	time	steps	left	means	an	expected	reward	of	zero

§ K	=	0
§ Repeat do	Bellman	backups

For every (s,a) pair:

K += 1
§ Until	convergence I.e.,	Q	values	don’t	change	much

This is easy….
We can sample this

Puzzle:		Q-Learning

a

Qk+1(s,a)

s,	a

s,a,s’

’)as’,(kQa’Max)=s’(kV

§ Forall s,	a	
§ Initialize	Q0(s,	a)	=	0				 no	time	steps	left	means	an	expected	reward	of	zero

§ K	=	0
§ Repeat do	Bellman	backups

For every (s,a) pair:

K += 1
§ Until	convergence I.e.,	Q	values	don’t	change	much

Q: How can we compute without R, T ?!?
A: Compute averages using sampled outcomes

5

Simple	Example:	Expected	Age
Goal:	Compute	expected	age	of	CSE	students

Unknown	P(A):	“Model	Based” Unknown	P(A):	“Model	Free”

Without	P(A),	instead	collect	samples	[a1,	a2,	…	aN]

Known	P(A)

Why	does	this	
work?		Because	
samples	appear	
with	the	right	
frequencies.

Why	does	this	
work?		Because	
eventually	you	
learn	the	right	

model.

Note:	never	know			P(age=22)

Anytime Model-Free	Expected	Age
Goal:	Compute	expected	age	of	CSE	students

Unknown	P(A):	“Model	Free”

Without	P(A),	instead	collect	samples	[a1,	a2,	…	aN]

Let A=0
Loop for i = 1 to ∞

ai ß ask “what is your age?”
A ß (i-1)/i * A + (1/i) * ai

Let A=0
Loop for i = 1 to ∞

ai ß ask “what is your age?”
A ß (1-α)*A + α*ai

6

Sampling	Q-Values
§ Big	idea:	learn	from	every	experience!

§ Follow	exploration	policy	a	ß π(s)
§ Update	Q(s,a)	each	time	we	experience	a	transition	(s,	a,	s’,	r)
§ Likely	outcomes	s’	will	contribute	updates	more	often

§ Update	towards	running	average:

s

p(s),	r

s’

Get	a	sample	of	Q(s,a): sample =	R(s,a,s’)	+	γ Maxa’ Q(s’,	a’)		

Update	to	Q(s,a): Q(s,a)ß (1-𝛼)Q(s,a)	+	(𝛼)sample

Q	Learning

§ Forall s,	a	
§ Initialize	Q(s,	a)	=	0				

§ Repeat	Forever
Where are you? s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:

7

Example Assume:	g =	1,	α =	1/2

Observed	Transition: B,	east,	C,	-2

0

0
0

C
0

0

0
8

D
0

0

0
0

B
0

0

0
0

A
0

0

0
0

E
0

In state B. What should you do?
Suppose (for now) we follow a random exploration policy

à “Go east”

Example Assume:	g =	1,	α =	1/2

Observed	Transition: B,	east,	C,	-2

0

0
0

C
0

0

0
8

D
0

0

0
0

B
0

0

0
0

A
0

0

0
0

E
0

0

0
0

C
0

0

0
8

D
0

0

0
?

B
0

0

0
0

A
0

0

0
0

E
0

½	 0	 ½	 -2	 0	-1	

8

Example Assume:	g =	1,	α =	1/2

Observed	Transition: B,	east,	C,	-2

0

0
0

C
0

0

0
8

D
0

0

0
0

B
0

0

0
0

A
0

0

0
0

E
0

0

0
0

C
0

0

0
8

D
0

0

0
-1

B
0

0

0
0

A
0

0

0
0

E
0

½	 0	 ½	 -2	 83

0

0
?

C
0

0

0
8

D
0

0

0
0

B
0

0

0
0

A
0

0

0
0

E
0

C,	east,	D,	-2

Example Assume:	g =	1,	α =	1/2

Observed	Transition: B,	east,	C,	-2

0

0
0

C
0

0

0
8

D
0

0

0
0

B
0

0

0
0

A
0

0

0
0

E
0

0

0
0

C
0

0

0
8

D
0

0

0
-1

B
0

0

0
0

A
0

0

0
0

E
0

0

0
3

C
0

0

0
8

D
0

0

0
-1

B
0

0

0
0

A
0

0

0
0

E
0

C,	east,	D,	-2

9

Q-Learning	Properties

§ Q-learning	converges	to	optimal	Q	function	(and	hence	learns optimal	policy)
§ even	if	you’re	acting	suboptimally!
§ This	is	called	off-policy	learning

§ Caveats:
§ You	have	to	explore	enough
§ You	have	to	eventually	shrink	the	learning	rate,	α
§ …	but	not	decrease	it	too	quickly

§ And… if	you	want	to	act optimally
§ You	have	to	switch	from	explore	to	exploit

[Demo:	Q-learning	– auto	– cliff	grid	(L11D1)]

Video	of	Demo	Q-Learning	Auto	Cliff Grid

10

Q	Learning

§ Forall s,	a	
§ Initialize	Q(s,	a)	=	0				

§ Repeat	Forever
Where are you? s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:

Exploration	vs.	Exploitation

11

Questions

§ How	to	explore?

1-e,	act	on	current	policy
§ When	to	exploit?

§ How	to	even	think	about	this	tradeoff?

Questions

§ How	to	explore?
§ Random	Exploration
§ Uniform	exploration
§ Epsilon	Greedy

§ Every	time	step,	flip	a	coin
§ With	(small)	probability	e,	act	randomly
§ With	(large)	probability	1-e,	act	on	current	policy

§ When	to	exploit?

§ How	to	even	think	about	this	tradeoff?

12

Regret

§ Even	if	you	learn	the	optimal	policy,	
you	still	make	mistakes	along	the	way!

§ Regret	is	a	measure	of	your	total	
mistake	cost:	the	difference	between	
your	(expected)	rewards,	including	
youthful	sub-optimality,	and	optimal	
(expected)	rewards

§ Minimizing	regret	goes	beyond	
learning	to	be	optimal	– it	requires	
optimally	learning	to	be	optimal

48

Two	KINDS	of	Regret
§ Cumulative	Regret:

§ achieve	near	optimal	cumulative	lifetime	reward	
(in	expectation)

§ Simple	Regret:	
§ quickly	identify	policy	with	high	reward	
(in	expectation)

13

50

RL	on	Single	State	MDP

§ Suppose	MDP	has	a	single	state	and	k	actions
§ Can	sample	rewards	of	actions	using	call	to	simulator
§ Sampling	action	a is	like	pulling	slot	machine	arm	with	random	payoff	
function	R(s,a) s

a1 a2 ak

R(s,a1) R(s,a2) R(s,ak)

Multi-Armed Bandit Problem

…

…

Multi-Armed	Bandits

§ Bandit	algorithms	are	not	just	useful	as	components	for	RL	&	
Monte-Carlo	planning

§ Pure	bandit	problems	arise	in	many	applications

§ Applicable	whenever:	
§ set	of	independent	options	with	unknown	utilities
§ cost	for	sampling	options	or	a	limit	on	total	samples
§ Want	to	find	the	best	option	or	maximize	utility	of	samples	

14

Multi-Armed	Bandits:	Example	1

§ Clinical	Trials
§ Arms	=	possible	treatments
§ Arm	Pulls	=	application	of	treatment	to	inidividual
§ Rewards	=	outcome	of	treatment
§ Objective	=	maximize	cumulative	reward	=	maximize	benefit	to	trial	
population	(or	find	best	treatment	quickly)

Multi-Armed	Bandits:	Example	2

§ Online	Advertising
§ Arms	=	different	ads/ad-types	for	a	web	page	
§ Arm	Pulls	=	displaying	an	ad	upon	a	page	access
§ Rewards	=	click	through
§ Objective	=	maximize	cumulative	reward	=	maximum	clicks	(or	find	
best	add	quickly)

15

54

Multi-Armed	Bandit:	Possible	Objectives

§ PAC	Objective:
§ find	a	near	optimal	arm	w/	high	probability

§ Cumulative	Regret:
§ achieve	near	optimal	cumulative	reward	over	lifetime	of	pulling	(in	
expectation)

§ Simple	Regret:	
§ quickly	identify	arm	with	high	reward	
§ (in	expectation)

s

a1 a2 ak

R(s,a1) R(s,a2) R(s,ak)

…

…

55

Cumulative	Regret	Objective

s

a1 a2 ak

…

hProblem: find arm-pulling strategy such that the expected total reward
at time n is close to the best possible (one pull per time step)
5Optimal (in expectation) is to pull optimal arm n times
5UniformBandit is poor choice --- waste time on bad arms
5Must balance exploring machines to find good payoffs and exploiting current

knowledge

16

How	to	Explore?
Several	schemes	for	forcing	exploration

§ Simplest:	random	actions	(e-greedy)
§ Every	time	step,	flip	a	coin
§ With	(small)	probability	e,	act	randomly
§ With	(large)	probability	1-e,	act	on	current	policy

§ Problems	with	random	actions?
§ You	do	eventually	explore	the	space,	but	keep	
thrashing	around	once	learning	is	done

§ One	solution:	lower	e over	time
§ Another	solution:	exploration	functions

§ Theory	of	Multi-Armed	Bandits

Exploration	Functions
§ When	to	explore?

§ Random	actions:	explore	a	fixed	amount
§ Better	idea:	explore	areas	whose	badness	is	not
(yet)	established,	eventually	stop	exploring

§ Exploration	function
§ Takes	a	value	estimate	u	and	a	visit	count	n,	and
returns	an	optimistic	utility,	e.g.

§ Note:	this	propagates	the	“bonus”	back	to	states	that	lead	to	unknown	states	as	well!

Modified	Q-Update:

Regular	Q-Update:

[Demo:	exploration	– Q-learning	– crawler	– exploration	function	(L11D4)]

17

58

Cumulative	Regret	Objective

32

Cumulative Regret Objective
�Theoretical results are often about “expected

cumulative regret” of an arm pulling strategy.

�Protocol: At time step n the algorithm picks an
arm 𝑎𝑛 based on what it has seen so far and
receives reward 𝑟𝑛 (𝑎𝑛 and 𝑟𝑛 are random variables).

�Expected Cumulative Regret (𝑬[𝑹𝒆𝒈𝒏]):
difference between optimal expected cummulative
reward and expected cumulative reward of our
strategy at time n

 𝐸[𝑅𝑒𝑔𝑛] = 𝑛 ⋅ 𝑅∗ − 𝐸[𝑟𝑛]
𝑛

𝑖=1

Strategy if one knew which arm was best

59

UCB	Algorithm	for	Minimizing	Cumulative	Regret

§ Q(a)	:	average	reward	for	trying	action	a																													
(in	our	single	state	s)	so	far	

§ n(a)	:	number	of	pulls	of	arm	a	so	far
§ Action	choice	by	UCB	after	n	pulls:

§ Assumes	rewards	in	[0,1] – normalized	from	Rmax.

)(
ln2)(maxarg
an
naQa an +=

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2), 235-256.

18

60

UCB:	Bounded	Sub-Optimality

)(
ln2)(maxarg
an
naQa an +=

Value Term:
favors actions that looked
good historically

Exploration Term:
actions get an exploration
bonus that grows with ln(n)

Expected number of pulls of sub-optimal arm a is bounded by:

where is the sub-optimality of arm a

n
a

ln8
2D

aD

Doesn’t waste much time on sub-optimal arms, unlike uniform!

61

UCB	Performance	Guarantee
[Auer,	Cesa-Bianchi,	&	Fischer,	2002]

35

UCB Performance Guarantee
[Auer, Cesa-Bianchi, & Fischer, 2002]

Theorem: The expected cumulative regret of UCB
𝑬[𝑹𝒆𝒈𝒏] after n arm pulls is bounded by O(log n)

� Is this good?

Yes. The average per-step regret is O log 𝑛
𝑛

Theorem: No algorithm can achieve a better
expected regret (up to constant factors)

35

UCB Performance Guarantee
[Auer, Cesa-Bianchi, & Fischer, 2002]

Theorem: The expected cumulative regret of UCB
𝑬[𝑹𝒆𝒈𝒏] after n arm pulls is bounded by O(log n)

� Is this good?

Yes. The average per-step regret is O log 𝑛
𝑛

Theorem: No algorithm can achieve a better
expected regret (up to constant factors)

35

UCB Performance Guarantee
[Auer, Cesa-Bianchi, & Fischer, 2002]

Theorem: The expected cumulative regret of UCB
𝑬[𝑹𝒆𝒈𝒏] after n arm pulls is bounded by O(log n)

� Is this good?

Yes. The average per-step regret is O log 𝑛
𝑛

Theorem: No algorithm can achieve a better
expected regret (up to constant factors)

