

Other Applications

- Go playing
- Robotic control
 - helicopter maneuvering, autonomous vehicles
 - Mars rover path planning, oversubscription planning
 - elevator planning
- Game playing backgammon, tetris, checkers
- Neuroscience
- Computational Finance, Sequential Auctions
- Assisting elderly in simple tasks
- Spoken dialog management
- Communication Networks switching, routing, flow control
- War planning, evacuation planning

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s') & discount γ
- Still looking for a policy π(s)
- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Exponential Moving Average • Exponential moving average • The running interpolation update: $\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$ • Makes recent samples more important: $x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + (1 - \alpha)^2 \cdot x_{n-3} + (1 - \alpha)^2 \cdot x_{$

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

Forgets about the past (distant past values were wrong anyway)

- Decreasing learning rate (alpha) can give converging averages
 - E.g., *α* = 1/i

