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CS 473: Artificial Intelligence
MDP Planning: Value Iteration and Policy Iteration

Travis Mandel (subbing for Dan Weld)

University of Washington
Slides by Dan Klein & Pieter Abbeel / UC Berkeley. (http://ai.berkeley.edu) and by Dan Weld, Mausam & Andrey Kolobov

Reminder: Midterm Monday!!

 Will cover everything from Search to Value Iteration

 One page (double-sided, 8.5 x 11) notes allowed

http://ai.berkeley.edu
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Reminder: MDP Planning

 Given an MDP, find optimal policy π*: SA that maximizes 
expected discounted reward

 Sometimes called “Solving” the MDP

 Being so long-term complicates things

 Simplifies things if we know long-term value of state

MDP Planning

 Value Iteration

 Prioritized Sweeping

 Policy Iteration
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Value Iteration

Value Iteration

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

 Forall s, Initialize V0(s) = 0     no time steps left means an expected reward of zero

 Repeat do Bellman backups
K += 1

 Repeat until |Vk+1(s) – Vk(s) | < ε,       forall s “convergence”

Qk+1(s, a) = Σs’  T(s, a, s’) [ R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

Called a 

“Bellman Backup”

Successive approximation; dynamic programming

} do ∀s, a}
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k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

If agent is in 4,3, it only 

has one legal action: 

get jewel. It gets a 

reward and the game 

is over.

If agent is in the pit, it 

has only one legal 

action, die.  It gets a 

penalty and the game 

is over.

Agent does NOT get a 

reward for moving 

INTO 4,3.
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k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

0.8 (0 + 0.9*1)
+ 0.1  (0 + 0.9*0)
+ 0.1  (0 + 0.9*0)

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0
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VI: Policy Extraction

Computing Actions from Values

 Let’s imagine we have the optimal values V*(s)

 How should we act?

 In general, it’s not obvious!

 We need to do a mini-expectimax (one step)

 This is called policy extraction, since it gets the policy implied by the values
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Computing Actions from Q-Values

 Let’s imagine we have the optimal q-values:

 How should we act?

 Completely trivial to decide!

 Important lesson: actions are easier to select from q-values than values!

Convergence*

 How do we know the Vk vectors will converge?

 Case 1: If the tree has maximum depth M, then 
VM holds the actual untruncated values

 Case 2: If the discount is less than 1
 Sketch: For any state Vk and Vk+1 can be viewed as 

depth k+1 expectimax results in nearly identical 
search trees

 The max difference happens if big reward at k+1 level

 That last layer is at best all RMAX

 But everything is discounted by γk that far out

 So Vk and Vk+1 are at most γk max|R| different

 So as k increases, the values converge
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Value Iteration - Recap

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

 Forall s, Initialize V0(s) = 0     no time steps left means an expected reward of zero

 Repeat do Bellman backups
K += 1

Repeat for all states, s, and all actions, a:

 Until |Vk+1(s) – Vk(s) | < ε,       forall s “convergence”

 Theorem: will converge to unique optimal values

Qk+1(s, a) = Σs’  T(s, a, s’) [ R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

Problems with Value Iteration

 Value iteration repeats the Bellman updates:

 Problem 1: It’s slow – O(S2A) per iteration

 Problem 2: The “max” at each state rarely changes

 Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’

s’

[Demo: value iteration (L9D2)]

Qk+1(s, a) = Σs’  T(s, a, s’) [ R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)
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VI  Asynchronous VI

 Is it essential to back up all states in each iteration?
 No!

 States may be backed up 
 many times or not at all

 in any order

 As long as no state gets starved…
 convergence properties still hold!!

30

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0
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Asynch VI: Prioritized Sweeping

 Why backup a state if values of successors unchanged?

 Prefer backing a state

 whose successors had most change

 Priority Queue of (state, expected change in value)

 Backup in the order of priority

 After backing up state s’, update priority queue

 for all predecessors s (ie all states where an action can reach s’) 

 Priority(s)  T(s,a,s’) * |Vk+1(s’) - Vk(s’)| 

Prioritized Sweeping

 Pros?

 Cons?
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MDP Planning

 Value Iteration

 Prioritized Sweeping

 Policy Iteration

Policy Methods

Policy Iteration = 
1. Policy Evaluation
2. Policy Improvement
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Part 1 - Policy Evaluation

Fixed Policies

 Expectimax trees max over all actions to compute the optimal values

 If we fixed some policy (s), then the tree would be simpler – only one action per state
 … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’

s’

Do the optimal action Do what  says to do
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Computing Utilities for a Fixed Policy

 A new basic operation: compute the utility of a state s under 
a fixed (generally non-optimal) policy

 Define the utility of a state s, under a fixed policy :
V(s) = expected total discounted rewards starting in s and following 

 Recursive relation (variation of Bellman equation):

(s)

s

s, (s)

s, (s),s’

s’

Example: Policy Evaluation

Always Go Right Always Go Forward
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Example: Policy Evaluation

Always Go Right Always Go Forward

Iterative Policy Evaluation Algorithm

 How do we calculate the V’s for a fixed policy ?

 Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

 Efficiency: O(S2) per iteration
 Often converges in much smaller number of iterations compared to VI

(s)

s

s, (s)

s, (s),s’

s’
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Linear Policy Evaluation Algorithm

 How do we calculate the V’s for a fixed policy ?

 Idea 2: Without the maxes, the Bellman equations are just a 
linear system of equations

 Solve with Matlab (or your favorite linear system solver) 
 S equations, S unknowns = O(S3) and EXACT!

 In large spaces, still too expensive

(s)

s

s, (s)

s, (s),s’

s’

𝑉𝜋 𝑠 =

𝑠′

𝑇 𝑠, 𝜋 𝑠 , 𝑠′ [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝜋(𝑠′)]

Part 2 - Policy Iteration
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Policy Iteration

 Initialize π(s) to random actions

 Repeat

 Step 1: Policy evaluation: calculate utilities of π at each s using a nested loop 

 Step 2: Policy improvement: update policy using one-step look-ahead

“For each s,  what’s the best action I could execute, assuming I then follow π?  

Let π’(s) = this best action.

π = π’

 Until policy doesn’t change

Policy Iteration Details

 Let i =0
 Initialize πi(s) to random actions
 Repeat

 Step 1: Policy evaluation:
 Initialize k=0;    Forall s, V0

π (s) = 0
 Repeat until Vπ converges

 For each state s, 

 Let k += 1
 Step 2: Policy improvement: 

 For each state, s, 

 If πi == πi+1 then it’s optimal; return it. 
 Else let i += 1
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Example

Initialize π0 to “always go right”

Perform policy evaluation

Perform policy improvement
Iterate through states ?

?

?

Has policy changed?

Yes!  i += 1

Example

π1 says “always go up”

Perform policy evaluation

Perform policy improvement
Iterate through states ?

?

?

Has policy changed?

No!  We have the optimal policy
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Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Iteration Properties

 Policy iteration finds the optimal policy, guaranteed (assuming 
exact evaluation)!

 Often converges (much) faster
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Comparison

 Both value iteration and policy iteration compute the same thing (all optimal values)

 In value iteration:

 Every iteration updates both the values and (implicitly) the policy

 We don’t track the policy, but taking the max over actions implicitly recomputes it

 What is the space being searched?

 In policy iteration:

 We do fewer iterations

 Each one is slower (must update all Vπ and then choose new best π)

 What is the space being searched?

 Both are dynamic programs for planning in MDPs


