

- Given an MDP, find optimal policy π*: S→A that maximizes expected discounted reward
 - Sometimes called "Solving" the MDP
- Being so long-term complicates things
 - Simplifies things if we know long-term value of state

k=0							
	000	Gridwor	ld Display	_			
	•			•			
	0.00	0.00	0.00 ▸	0.00			
							
	0.00		• 0.00	0.00			
	^	^	^				
	0.00	0.00	0.00	0.00			
				-			
	VALUE	ES AFTER	0 ITERA	TIONS	Noise = 0.2 Discount = 0.9 Living reward = 0		

k=1							
	000	Gridwor	ld Display				
If agent is in 4.3 it only							
has one legal action: get jewel. It gets a reward and the game	0.00	0.00	0.00 →	1.00			
is over.							
If agent is in the pit, it has only one legal action, die. It gets a penalty and the game	0.00		∢ 0.00	-1.00			
is over.			^				
Agent does NOT get a reward for moving	0.00	0.00	0.00	0.00			
INTO 4,3.				-			
	VALUI	ES AFTER	1 ITERA	TIONS	Noise = 0.2 Discount = 0.9 Living reward = 0		

k=3							
0	0 0	Gridworl	d Display				
	0.00 >	0.52 →	0.78)	1.00			
	0.00		•	-1.00			
	0.00	0.00	0.00	0.00			
	VALUES AFTER 3 ITERATIONS						

k=7							
0	0 0	Gridworl	d Display				
	0.62 ≯	0.74 →	0.85)	1.00			
	0.50		0. 57	-1.00			
	0.34	0.36 →	0.45	∢ 0.24			
	VALUE	S AFTER	7 ITERA	TIONS	Noise = 0.2 Discount = 0.9 Living reward = 0		

k=9						
	000	Gridworl	d Display			
	0.64 ≯	0.74 →	0.85)	1.00		
	0.55		• 0.57	-1.00		
	0.46	0.40 →	0. 47	∢ 0.27		
	VALUE	S AFTER	9 ITERA	TIONS	Noise = 0.2 Discount = 0.9 Living reward = 0	

k=11							
0	00	Gridworl	d Display	-			
	0.64 ≯	0.74 ≯	0.85 ♪	1.00			
	0.56		0. 57	-1.00			
	0.4 8	∢ 0.42	0. 47	∢ 0.27			
	VALUE	S AFTER	11 ITERA	ATIONS	Noise = 0.2 Discount = 0.9 Living reward = 0		

k=100						
	00	Gridworl	d Display			
	0.64 →	0.74 →	0.85 ≯	1.00		
	0. 57		• 0.57	-1.00		
	0. 49	∢ 0.43	0.48	♦ 0.28		
	VALUES	S AFTER 1	OO ITER	ATIONS	Noise = 0.2 Discount = 0.9 Living reward = 0	

k=9						
(000	Gridworl	d Display			
	0.64 →	0.74 ≯	0.85)	1.00		
	0.55		• 0.57	-1.00		
	• 0.46	0.40 →	0.47	• 0.27		
	VALUE	S AFTER	9 ITERA	TIONS	Noise = 0.2 Discount = 0.9 Living reward = 0	

k=11							
0	00	Gridworl	d Display	-			
	0.64 →	0.74 →	0.85)	1.00			
	0. 56		• 0.57	-1.00			
	0.48	∢ 0.42	0.47	• 0.27			
	VALUE	S AFTER	11 ITERA	ATIONS	Noise = 0.2 Discount = 0.9 Living reward = 0		

k=100						
	00	Gridworl	d Display			
	0.64 →	0.74 →	0.85 ≯	1.00		
	0. 57		• 0.57	-1.00		
	0. 49	∢ 0.43	0.48	♦ 0.28		
	VALUES	S AFTER 1	OO ITER	ATIONS	Noise = 0.2 Discount = 0.9 Living reward = 0	

Asynch VI: Prioritized Sweeping

- Why backup a state if values of successors unchanged?
- Prefer backing a state
 - whose successors had most change
- Priority Queue of (state, expected change in value)
- Backup in the order of priority
- After backing up state s', update priority queue
 - for all predecessors s (ie all states where an action can reach s')
 - Priority(s) \leftarrow T(s,a,s') * $|V^{k+1}(s') V^k(s')|$

Prioritized Sweeping

- Pros?
- Cons?

Part 1 - Policy Evaluation

Policy Iteration

- Initialize π(s) to random actions
- Repeat
 - Step 1: Policy evaluation: calculate utilities of π at each s using a nested loop
 - Step 2: Policy improvement: update policy using one-step look-ahead
 "For each s, what's the best action I could execute, assuming I then follow π? Let π'(s) = this best action.

π = π'

Until policy doesn't change

Policy Iteration Details

Let i =0

- Initialize π_i(s) to random actions
- Repeat
 - Step 1: Policy evaluation:
 - Initialize k=0; Forall s, $V_0^{\pi}(s) = 0$
 - Repeat until V^π converges
 - For each state s, $V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$
 - Let k += 1
 - Step 2: Policy improvement:

• For each state, s, $\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$

- If $\pi_i == \pi_{i+1}$ then it's optimal; return it.
- Else let i += 1

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
 - What is the space being searched?
- In policy iteration:
 - We do fewer iterations
 - Each one is slower (must update all V^π and then choose new best π)
 - What is the space being searched?
- Both are dynamic programs for planning in MDPs