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CS 473: Artificial Intelligence
MDP Planning: Value Iteration and Policy Iteration

Travis Mandel (subbing for Dan Weld)

University of Washington
Slides by Dan Klein & Pieter Abbeel / UC Berkeley. (http://ai.berkeley.edu) and by Dan Weld, Mausam & Andrey Kolobov

Reminder: Midterm Monday!!

 Will cover everything from Search to Value Iteration

 One page (double-sided, 8.5 x 11) notes allowed

http://ai.berkeley.edu
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Reminder: MDP Planning

 Given an MDP, find optimal policy π*: SA that maximizes 
expected discounted reward

 Sometimes called “Solving” the MDP

 Being so long-term complicates things

 Simplifies things if we know long-term value of state

MDP Planning

 Value Iteration

 Prioritized Sweeping

 Policy Iteration
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Value Iteration

Value Iteration

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

 Forall s, Initialize V0(s) = 0     no time steps left means an expected reward of zero

 Repeat do Bellman backups
K += 1

 Repeat until |Vk+1(s) – Vk(s) | < ε,       forall s “convergence”

Qk+1(s, a) = Σs’  T(s, a, s’) [ R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

Called a 

“Bellman Backup”

Successive approximation; dynamic programming

} do ∀s, a}
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k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

If agent is in 4,3, it only 

has one legal action: 

get jewel. It gets a 

reward and the game 

is over.

If agent is in the pit, it 

has only one legal 

action, die.  It gets a 

penalty and the game 

is over.

Agent does NOT get a 

reward for moving 

INTO 4,3.
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k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

0.8 (0 + 0.9*1)
+ 0.1  (0 + 0.9*0)
+ 0.1  (0 + 0.9*0)

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



11

VI: Policy Extraction

Computing Actions from Values

 Let’s imagine we have the optimal values V*(s)

 How should we act?

 In general, it’s not obvious!

 We need to do a mini-expectimax (one step)

 This is called policy extraction, since it gets the policy implied by the values
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Computing Actions from Q-Values

 Let’s imagine we have the optimal q-values:

 How should we act?

 Completely trivial to decide!

 Important lesson: actions are easier to select from q-values than values!

Convergence*

 How do we know the Vk vectors will converge?

 Case 1: If the tree has maximum depth M, then 
VM holds the actual untruncated values

 Case 2: If the discount is less than 1
 Sketch: For any state Vk and Vk+1 can be viewed as 

depth k+1 expectimax results in nearly identical 
search trees

 The max difference happens if big reward at k+1 level

 That last layer is at best all RMAX

 But everything is discounted by γk that far out

 So Vk and Vk+1 are at most γk max|R| different

 So as k increases, the values converge
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Value Iteration - Recap

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

 Forall s, Initialize V0(s) = 0     no time steps left means an expected reward of zero

 Repeat do Bellman backups
K += 1

Repeat for all states, s, and all actions, a:

 Until |Vk+1(s) – Vk(s) | < ε,       forall s “convergence”

 Theorem: will converge to unique optimal values

Qk+1(s, a) = Σs’  T(s, a, s’) [ R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

Problems with Value Iteration

 Value iteration repeats the Bellman updates:

 Problem 1: It’s slow – O(S2A) per iteration

 Problem 2: The “max” at each state rarely changes

 Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’

s’

[Demo: value iteration (L9D2)]

Qk+1(s, a) = Σs’  T(s, a, s’) [ R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)
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VI  Asynchronous VI

 Is it essential to back up all states in each iteration?
 No!

 States may be backed up 
 many times or not at all

 in any order

 As long as no state gets starved…
 convergence properties still hold!!

30

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



19

Asynch VI: Prioritized Sweeping

 Why backup a state if values of successors unchanged?

 Prefer backing a state

 whose successors had most change

 Priority Queue of (state, expected change in value)

 Backup in the order of priority

 After backing up state s’, update priority queue

 for all predecessors s (ie all states where an action can reach s’) 

 Priority(s)  T(s,a,s’) * |Vk+1(s’) - Vk(s’)| 

Prioritized Sweeping

 Pros?

 Cons?
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MDP Planning

 Value Iteration

 Prioritized Sweeping

 Policy Iteration

Policy Methods

Policy Iteration = 
1. Policy Evaluation
2. Policy Improvement
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Part 1 - Policy Evaluation

Fixed Policies

 Expectimax trees max over all actions to compute the optimal values

 If we fixed some policy (s), then the tree would be simpler – only one action per state
 … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’

s’

Do the optimal action Do what  says to do
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Computing Utilities for a Fixed Policy

 A new basic operation: compute the utility of a state s under 
a fixed (generally non-optimal) policy

 Define the utility of a state s, under a fixed policy :
V(s) = expected total discounted rewards starting in s and following 

 Recursive relation (variation of Bellman equation):

(s)

s

s, (s)

s, (s),s’

s’

Example: Policy Evaluation

Always Go Right Always Go Forward
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Example: Policy Evaluation

Always Go Right Always Go Forward

Iterative Policy Evaluation Algorithm

 How do we calculate the V’s for a fixed policy ?

 Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

 Efficiency: O(S2) per iteration
 Often converges in much smaller number of iterations compared to VI

(s)

s

s, (s)

s, (s),s’

s’
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Linear Policy Evaluation Algorithm

 How do we calculate the V’s for a fixed policy ?

 Idea 2: Without the maxes, the Bellman equations are just a 
linear system of equations

 Solve with Matlab (or your favorite linear system solver) 
 S equations, S unknowns = O(S3) and EXACT!

 In large spaces, still too expensive

(s)

s

s, (s)

s, (s),s’

s’

𝑉𝜋 𝑠 =෍

𝑠′

𝑇 𝑠, 𝜋 𝑠 , 𝑠′ [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝜋(𝑠′)]

Part 2 - Policy Iteration
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Policy Iteration

 Initialize π(s) to random actions

 Repeat

 Step 1: Policy evaluation: calculate utilities of π at each s using a nested loop 

 Step 2: Policy improvement: update policy using one-step look-ahead

“For each s,  what’s the best action I could execute, assuming I then follow π?  

Let π’(s) = this best action.

π = π’

 Until policy doesn’t change

Policy Iteration Details

 Let i =0
 Initialize πi(s) to random actions
 Repeat

 Step 1: Policy evaluation:
 Initialize k=0;    Forall s, V0

π (s) = 0
 Repeat until Vπ converges

 For each state s, 

 Let k += 1
 Step 2: Policy improvement: 

 For each state, s, 

 If πi == πi+1 then it’s optimal; return it. 
 Else let i += 1
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Example

Initialize π0 to “always go right”

Perform policy evaluation

Perform policy improvement
Iterate through states ?

?

?

Has policy changed?

Yes!  i += 1

Example

π1 says “always go up”

Perform policy evaluation

Perform policy improvement
Iterate through states ?

?

?

Has policy changed?

No!  We have the optimal policy
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Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Iteration Properties

 Policy iteration finds the optimal policy, guaranteed (assuming 
exact evaluation)!

 Often converges (much) faster
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Comparison

 Both value iteration and policy iteration compute the same thing (all optimal values)

 In value iteration:

 Every iteration updates both the values and (implicitly) the policy

 We don’t track the policy, but taking the max over actions implicitly recomputes it

 What is the space being searched?

 In policy iteration:

 We do fewer iterations

 Each one is slower (must update all Vπ and then choose new best π)

 What is the space being searched?

 Both are dynamic programs for planning in MDPs


