CS 573: Artificial Intelligence
 Markov Decision Processes

Dan Weld
University of Washington

Recap: Defining MDPs

- Markov decision processes:
- Set of states S
- Start state s_{0}
- Set of actions A
- Transitions P(s'|s,a) (or T(s,a, s'))
- Rewards R(s,a, s') (and discount γ)

- MDP quantities so far:
- Policy = Choice of action for each state
- Utility = sum of (discounted) rewards

V* = Optimal Value Function

The value (utility) of a state s:

$$
\mathrm{V}^{*}(\mathrm{~s})
$$

"expected utility starting in s \& acting optimally forever"

Q*

The value (utility) of the q-state (s, a) :

$$
Q^{*}(s, a)
$$

"expected utility of 1) starting in state s
2) taking action a
3) acting optimally forever after that"
$Q^{*}(s, a)=$ reward from executing a in s then ending in s^{\prime} plus... discounted value of $\mathrm{V}^{*}\left(\mathrm{~s}^{\prime}\right)$

π^{*} Specifies The Optimal Policy

$\pi^{*}(s)=$ optimal action from state s

The Bellman Equations

The Bellman Equations

- Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$
\begin{aligned}
V^{*}(s) & =\max _{a} Q^{*}(s, a) \\
Q^{*}(s, a) & =\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Gridworld: Q*

C-VALDES AFTER Cridworld Display

Gridworld Values $\mathrm{V}^{*} \quad V^{*}(s)=\max _{a} Q^{*}(s, a)$

VATUES AFTER 100 ITFRATIONS

No End in Sight...

- We're doing way too much work with expectimax!
- Problem 1: States are repeated
- Idea: Only compute needed quantities once
- Like graph search (vs. tree search)
- Problem 2: Tree goes on forever
- Rewards @ each step \rightarrow V changes
- Idea: Do a depth-limited computation, but with increasing depths until change is small
- Note: deep parts of the tree eventually don't matter if $\gamma<1$

Time-Limited Values

- Key idea: time-limited values
- Define $\mathrm{V}_{\mathrm{k}}(\mathrm{s})$ to be the optimal value of s if the game ends in k more time steps
- Equivalently, it's what a depth-k expectimax would give from s

Value Iteration

Called a
 "Bellman Backup"
 Value Iteration

- Forall s , tialize $\mathrm{V}_{0}(\mathrm{~s})=0 \quad$ no time steps left means an expected reward of zero
- Repeat

$$
K+=1
$$

$Q_{k+1}(s, a)=\Sigma_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+V_{k}\left(s^{\prime}\right)\right]$
$V_{k+1}(s)=\operatorname{Max}_{a} Q_{k+1}(s, a)$

- Repeat until $\left|\mathrm{V}_{\mathrm{k}+1}(\mathrm{~s})-\mathrm{V}_{\mathrm{k}}(\mathrm{s})\right|<\varepsilon$, forall s "convergence"

$v_{k}\left(s^{\prime}\right)$

Example: Value Iteration

Assume no discount (gamma=1) to keep math simple!

$Q_{k+1}(s, a)=\Sigma_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]$
$\mathrm{V}_{\mathrm{k}+1}(\mathrm{~s})=\operatorname{Max}_{\mathrm{a}} \mathrm{Q}_{\mathrm{k}+1}(\mathrm{~s}, \mathrm{a})$

Example: Value Iteration

$$
Q_{k+1}(s, a)=\Sigma_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

$$
\mathrm{V}_{\mathrm{k}+1}(\mathrm{~s})=\operatorname{Max}_{\mathrm{a}} \mathrm{Q}_{\mathrm{k}+1}(\mathrm{~s}, \mathrm{a})
$$

Example: Value Iteration

$\mathrm{k}=11$

VALUES AFIER 11 IIERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$\mathrm{k}=100$

VALUES AFTER 100 ITERARIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

VI: Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values $\mathrm{V}^{*}(\mathrm{~s})$
- How should we act?
- In general, it's not obvious!
- We need to do a mini-expectimax (one step)

$$
\pi^{*}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
- Completely trivial to decide!

$$
\pi^{*}(s)=\arg \max _{a} Q^{*}(s, a)
$$

- Important lesson: actions are easier to select from q-values than values!

Value Iteration - Recap

- Forall s , Initialize $\mathrm{V}_{0}(\mathbf{s})=0 \quad$ no time steps left means an expected reward of zero
- Repeat do Bellman backups

K += 1
Repeat for all states, s , and all actions, a:

$$
\begin{aligned}
& Q_{k+1}(s, a)=\Sigma_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+y V_{k}\left(s^{\prime}\right)\right] \\
& V_{k+1}(s)=\operatorname{Max}_{a} Q_{k+1}(s, a)
\end{aligned}
$$

- Until $\left|\mathrm{V}_{\mathrm{k}+1}(\mathrm{~s})-\mathrm{V}_{\mathrm{k}}(\mathrm{s})\right|<\varepsilon, \quad$ forall s "convergence"
- Theorem: will converge to unique optimal values

