CS 573: Artificial Intelligence

Markov Decision Processes

Dan Weld

University of Washington

Slides by Dan Klein & Pieter Abbeel / UC Berkeley. (http://ai.berkeley.edu) and by Mausam & Andrey Kolobov

Recap: Defining MDPs

= Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount y)

= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

= Value Iteration

= Asynchronous VI

= Policy Iteration

= Reinforcement Learning

V* = Optimal Value Function

The value (utility) of a state s:
V(s)

“expected utility starting in s & acting optimally forever”

Q*
The value (utility) of the g-state (s,a):
Q'(s,a)

“expected utility of 1) starting in state s
2) taking action a
3) acting optimally forever after that”

Q*(s,a) = reward from executing a in s then ending in s’
plus... discounted value of V*(s’)

n* Specifies The Optimal Policy

7" (s) = optimal action from state s

The Bellman Equations

The Bellman Equations

= Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

V*(s) = maxQ*(s, a)

Q*(s,a) = ZT(S, a,s) [R(s, a,s) + ny*(s/)}

S

= These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Gridworld: Q*

Q-VALUES AFTER 100 ITERATIONS

Gridworld Values V* V7(s) = maxQ(s, a)

VALUES AFTER 100 ITERATIONS

No End in Sight...

= We're doing way too much work
with expectimax!

= Problem 1: States are repeated

@
= |dea: Only compute needed
quantities once

= Like graph search (vs. tree search)

- N G
= Problem 2: Tree goes on forever fl Q m fl fl m fl m
* Rewards @ eachstep>Vchanges | | | | [| ||| || VLV bbb bbb
= |dea: Do a depth-limited
computation, but with increasing
depths until change is small

= Note: deep parts of the tree
eventually don’t matter ify<1

Time-Limited Values

= Key idea: time-limited values

= Define V\(s) to be the optimal value of s if the game ends

in k more time steps
= Equivalently, it’s what a depth-k expectimax would give from s

[Demo — time-limited values (L8D6)]

Value Iteration

PG V/alue Iteration
Bellman Backup

= Forall s\@tialize Vy(s) =0 no time steps left means an expected reward of zero

= Repeat
K+=1
Qk+1(si a) = ZS’ T(S’ a, S,) [R(S’ a, S,) Ty Vk(S,)]
}do Vs, a
Vi+1(8) = Max 5 Qi+ (s, a)

= Repeat until |Vy,i(s)-Vi(s) | <, foralls “convergence”

Successive approximation; dynamic programming

Example: Value Iteration

Assume no discount (gamma=1) to
keep math simple!

0.5 +1

Overheated

Qqi1(s, @) = 2¢ T(s, @, 8") [R(s, a,8) + 'y Vi(s')]

Vie1(8) = Max o Qi1 (s, @)

Example: Value Iteration

Assume no discount (gamma=1) to keep math simple!

e @ &

s 3
' G oy v}“
i 1 [Q A . Overheated
+,

Qi+1(s, @) =Z¢ T(s, a,s") [R(s, a, s") + y Vi(s')]

Vo [Vir1(8) = Max 5 Qi+1 (s, Q)

b math simple!

Overheated

Qqi1(s, @) = 2¢ T(s, @, 8") [R(s, a,8) + 'y Vi(s')]

[Vie1(8) = Max o Qi1 (s, @)

. A 23 . R
- o~ R
, = e
=y =
[1 Q A . Overheated
+

[Vir1(8) = Max 5 Qi+1 (s, Q)

Q(6 ,fast)=-10+0

Q(@&» slow) = %(1 +0) + %(1+0)

math simple!

Qi+1(s, @) =Z¢ T(s, a,s") [R(s, a, s") + y Vi(s')]

Q(éD, fast) = %(2 +0) + %(2 +0)

ma=1) to keep math simple!

Q(%, slow) = 1*(1+0)

Overheated

Qqi1(s, @) = 2¢ T(s, @, 8") [R(s, a,8) + 'y Vi(s')]

Vie1(8) = Max o Qi1 (s, @)

Example: Value Iteration

Assume no discount (gamma=1) to keep math simple!

[0 0 0]
1,2 1,-10 0
[2 1 O Overheated
3,35 35,10 0O Qi+1(s, @) =Z¢ T(s, a,s") [R(s, a, s") + y Vi(s')]
3.5 0

Vir1(8) = Max 5 Qi+1 (s, Q)

10

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

If agentisin 4,3, it only
has one legal action:
get jewel. It gets a
reward and the game
is over.

If agent is in the pit, it
has only one legal
action, die. Itgetsa
penalty and the game
is over.

Agent does NOT get a
reward for moving
INTO 4,3.

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

11

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

12

k=4

Gridworld Display

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

13

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

14

k=8

Gridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

15

k=10

Gridworld Display

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k=11

Gridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

16

k=12

Gridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

17

VI: Policy Extraction

= Let’s imagine we have the optimal values V*(s)

How should we act?
* |n general, it’s not obvious!

We need to do a mini-expectimax (one step) -

m*(s) = arg Q”IaXZT(s,a, sY[R(s,a,s") +~V*(s)]

This is called policy extraction, since it gets the policy implied by the values

18

Computing Actions from Q-Values

= Let’s imagine we have the optimal g-values: WW
VNNV ..

= How should we act? W.W

= Completely trivial to decide! g ”9

*(s) = arg max Q" (s, a) %

= |Important lesson: actions are easier to select from g-values than values!

Value Iteration - Recap

Forall s, Initialize Vy(s) =0 no time steps left means an expected reward of zero

= Repeat do Bellman backups
K+=1
Repeat for all states, s, and all actions, a:

Qu+1(s, @) =Zg T(s, a,s") [R(s, a, 8") + y Vi(s')]

Vi+1(8) = Max 5 Qi+ (s, a)

Until |Vii(s) = Vil(s) | <g, foralls “convergence”

Theorem: will converge to unique optimal values

19

