
1

CS	573:	Artificial	Intelligence
Markov	Decision	Processes

Dan	Weld

University	of	Washington
Slides	by	Dan	Klein	&	Pieter	Abbeel /	UC	Berkeley.	(http://ai.berkeley.edu)	and	by	Mausam &	Andrey Kolobov

Recap:	Defining	MDPs

§ Markov	decision	processes:
§ Set	of	states	S
§ Start	state	s0
§ Set	of	actions	A
§ Transitions	P(s’|s,a)	(or	T(s,a,s’))
§ Rewards	R(s,a,s’)	(and	discount	g)

§ MDP	quantities	so	far:
§ Policy	=	Choice	of	action	for	each	state
§ Utility	=	sum	of	(discounted)	rewards

a

s

s,	a

s,a,s’
s’

2

Solving	MDPs

§ Value	Iteration
§ Asynchronous	VI

§ Policy	Iteration

§ Reinforcement	Learning

V*	=	Optimal	Value	Function	

The	value (utility)	of	a	state	s:

V*(s)	

“expected	utility	starting	in	s	&	acting	optimally	forever”

3

Q*
The	value	(utility)	of	the	q-state	(s,a):

Q*(s,a)

“expected	utility	of	1)	starting	in	state	s
2)	taking	action	a
3)	acting optimally	forever after	that”

Q*(s,a)	=	reward	from	executing	a	in	s then	ending	in	s’
plus…	discounted value	of	V*(s’)

p*				Specifies	The	Optimal	Policy

p*(s)	=	optimal	action	from	state	s

4

The	Bellman	Equations

How	to	be	optimal:

Step	1:	Take	correct	first	action

Step	2:	Keep	being	optimal

The	Bellman	Equations

§ Definition	of	“optimal	utility”	via	expectimax
recurrence	gives	a	simple	one-step	lookahead
relationship	amongst	optimal	utility	values

§ These	are	the	Bellman	equations,	and	they	characterize	
optimal	values	in	a	way	we’ll	use	over	and	over

a

s

s,	a

s,a,s’
s’

(1920-1984)

5

Gridworld:	Q*

Gridworld Values	V*

6

No	End	in	Sight…
§ We’re	doing	way	too	much	work	

with	expectimax!

§ Problem	1:	States	are	repeated	
§ Idea:	Only	compute	needed	

quantities	once
§ Like	graph	search	(vs. tree	search)

§ Problem	2:	Tree	goes	on	forever
§ Rewards	@	each	step	à V	changes
§ Idea:	Do	a	depth-limited	

computation,	but	with	increasing	
depths	until	change	is	small

§ Note:	deep	parts	of	the	tree	
eventually don’t	matter	if	γ <	1

Time-Limited	Values

§ Key	idea:	time-limited	values

§ Define	Vk(s)	to	be	the	optimal	value	of	s	if	the	game	ends	
in	k	more	time	steps
§ Equivalently,	it’s	what	a	depth-k	expectimax would	give	from	s

[Demo	– time-limited	values	(L8D6)]

7

Value	Iteration

Value	Iteration

a

Vk+1(s)

s,	a

s,a,s’
)s’(kV

§ Forall s,	Initialize	V0(s)	=	0					no	time	steps	left	means	an	expected	reward	of	zero

§ Repeat do	Bellman	backups
K += 1

§ Repeat	until |Vk+1(s)	– Vk(s)	|	<	ε,							forall s	 “convergence”

Qk+1(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

Called a
“Bellman Backup”

Successive	approximation;	dynamic	programming

}	do	∀s,	a}

8

Example:	Value	Iteration
Assume	no	discount	(gamma=1)	to	

keep	math	simple!

Qk+1(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

Example:	Value	Iteration

0													0													0

Assume	no	discount	(gamma=1)	to	keep	math	simple!

Qk+1(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

9

Example:	Value	Iteration

0													0													0

Assume	no	discount	(gamma=1)	to	keep	math	simple!

Qk+1(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

0

Q(,		,slow)	=		

Q(,			,fast)	=																

Q1(s,a)=

0

Example:	Value	Iteration

0													0													0

1			

Assume	no	discount	(gamma=1)	to	keep	math	simple!

Qk+1(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

-10 0

Q(,		,slow)	=	½(1	+	0)	+	½(1+0)

Q(,			,fast)	=	-10	+	0

Q1(s,a)=

0

1,

Q(,		,slow)	=		

10

Example:	Value	Iteration

0													0													0

1														0

Assume	no	discount	(gamma=1)	to	keep	math	simple!

Qk+1(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

2 1,-10 0

Q(,	fast)	=	½(2	+	0)	+	½(2	+	0)

Q1(s,a)=

Q(,	slow)	=	1*(1	+	0)

2

Q(,	fast)	=

Q(,	slow)	=

1,

Example:	Value	Iteration

0													0													0

2													1														0

3.5										3.5											0

Assume	no	discount	(gamma=1)	to	keep	math	simple!

Qk+1(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

1,	2				 1,-10 0

3,3.5 3.5,-10 0

Q1(s,a)=

Q2(s,a)=

11

k=0

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=1

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

If agent is in 4,3, it only
has one legal action:
get jewel. It gets a
reward and the game
is over.
If agent is in the pit, it
has only one legal
action, die. It gets a
penalty and the game
is over.

Agent does NOT get a
reward for moving
INTO 4,3.

12

k=2

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=3

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

13

k=4

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=5

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

14

k=6

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=7

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

15

k=8

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=9

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

16

k=10

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=11

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

17

k=12

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=100

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

18

VI:	Policy	Extraction

Computing	Actions	from	Values

§ Let’s	imagine	we	have	the	optimal	values	V*(s)

§ How	should	we	act?
§ In	general,	it’s	not	obvious!

§ We	need	to	do	a	mini-expectimax (one	step)

§ This	is	called	policy	extraction,	since	it	gets	the	policy	implied	by	the	values

19

Computing	Actions	from	Q-Values

§ Let’s	imagine	we	have	the	optimal	q-values:

§ How	should	we	act?
§ Completely	trivial	to	decide!

§ Important	lesson:	actions	are	easier	to	select	from	q-values	than	values!

Value	Iteration	- Recap

a

Vk+1(s)

s,	a

s,a,s’
)s’(kV

§ Forall s,	Initialize	V0(s)	=	0					no	time	steps	left	means	an	expected	reward	of	zero

§ Repeat do	Bellman	backups
K += 1
Repeat	for	all	states,	s,	and	all	actions,	a:

§ Until	|Vk+1(s)	– Vk(s)	|	<	ε,							forall s	 “convergence”

§ Theorem:	will	converge	to	unique	optimal	values

Qk+1(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

