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CS	473:	Artificial	Intelligence
Markov	Decision	Processes

Dan	Weld

University	of	Washington
[Slides	originally	created	by	Dan	Klein	&	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available at	http://ai.berkeley.edu.]

Logistics

§ PS	2	due	today
§ Midterm	in	one	week

§ Covers	all	material	through	value	iteration	(wed	/	fri)
§ Closed	book
§ You	may	bring	one	8.5	x	11”	double-sided	sheet	of	paper
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Outline

§ Adversarial Games
§ Minimax search
§ α-β search
§ Evaluation functions
§ Multi-player, non-0-sum

§ Stochastic Games
§ Expectimax

§ Markov Decision Processes
§ Reinforcement Learning

Agent	vs.	Environment

§ An	agent is	an	entity	
that	perceives and	acts.

§ A	rational agent
selects	actions	that	
maximize	its	utility 
function.		

Agent

Sensors

?

Actuators

Environm
ent

Percepts

Actions

Deterministic vs. stochastic
Fully observable vs. partially observable
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Rational	Preferences

Theorem:	Rational	preferences	imply	behavior	describable	as	maximization	of	expected	utility

The	Axioms	of	Rationality

§ Theorem	[Ramsey,	1931;	von	Neumann	&	Morgenstern,	1944]
§ Given	any	preferences	satisfying	these	constraints,	there	exists	a	real-valued

function	U	such	that:

§ I.e.	values	assigned	by	U	preserve	preferences	of	both	prizes	and	lotteries!

§ Maximum	expected	utility	(MEU)	principle:
§ Choose	the	action	that	maximizes	expected	utility
§ Note:	an	agent	can	be	entirely	rational	(consistent	with	MEU)	without	ever	representing	

or	manipulating	utilities	and	probabilities
§ E.g.,	a	lookup	table	for	perfect	tic-tac-toe,	a	reflex	vacuum	cleaner

MEU	Principle
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Human	Utilities

Money

§ Money	does	not behave	as	a	utility	function,	but	we	can	talk	
about	the	utility	of	having	money	(or	being	in	debt)

§ Given	a	lottery	L	=	[p,	$X;	(1-p),	$Y]
§ The	expected	monetary	value	EMV(L)	is	p*X	+	(1-p)*Y
§ U(L)	=	p*U($X)	+	(1-p)*U($Y)
§ Typically,	U(L)	<	U(	EMV(L)	)
§ In	this	sense,	people	are	risk-averse
§ When	deep	in	debt,	people	are	risk-prone
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Example:	Insurance

Consider	the	lottery	[0.5,	$1000;		0.5,	$0]
§ What	is	its	expected	monetary	value?		($500)
§ What	is	its	certainty	equivalent?

§ Monetary	value	acceptable	in	lieu	of	lottery
§ $400	for	most	people

§ Difference	of	$100	is	the	insurance	premium
§ There’s	an	insurance	industry	because	people	will	pay	to	reduce	their	risk
§ If	everyone	were	risk-neutral,	no	insurance	needed!

§ It’s	win-win:	you’d	rather	have	the	$400	and	the	insurance	company	would	
rather	have	the	lottery	(their	utility	curve	is	flat	and	they	have	many	lotteries)

Non-Deterministic	Search
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Example:	Grid	World

§ A	maze-like	problem
§ The	agent	lives	in	a	grid
§ Walls	block	the	agent’s	path

§ Noisy	movement:	actions	do	not	always	go	as	planned
§ 80%	of	the	time,	the	action	North	takes	the	agent	North	

(if	there	is	no	wall	there)
§ 10%	of	the	time,	North	takes	the	agent	West;	10%	East
§ If	there	is	a	wall	in	the	direction	the	agent	would	have	

been	taken,	the	agent	stays	put

§ The	agent	receives	rewards	each	time	step
§ Small	“living”	reward	each	step	(can	be	negative)
§ Big	rewards	come	at	the	end	(good	or	bad)

§ Goal:	maximize	sum	of	rewards

Grid	World	Actions
Deterministic	Grid	World Stochastic	Grid	World
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Markov	Decision	Processes

§ An	MDP	is	defined	by:
§ A	set	of	states	s	Î S
§ A	set	of	actions	a	Î A
§ A	transition	function	T(s,	a,	s’)

§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

T(s11,	E,	…
…

T(s31,	N,	s11)	=	0
…

T(s31,	N,	s32)	=	0.8
T(s31,	N,	s21)	=	0.1
T(s31,	N,	s41)	=	0.1…

T	is	a	Big	Table!
11 X	4	x	11	=	484	entries

For	now,	we	give	this	as	input	to	the	agent

Markov	Decision	Processes

§ An	MDP	is	defined	by:
§ A	set	of	states	s	Î S
§ A	set	of	actions	a	Î A
§ A	transition	function	T(s,	a,	s’)

§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

§ A	reward	function	R(s,	a,	s’)	

…
R(s32,	N,	s33)	=	-0.01

…
R(s32,	N,	s42)	=	-1.01

R(s33,	E,	s43)	=		0.99
…

Cost	of	breathing

R	is	also	a	Big	Table!

For	now,	we	also	give	this	to	the	agent



8

Markov	Decision	Processes

§ An	MDP	is	defined	by:
§ A	set	of	states	s	Î S
§ A	set	of	actions	a	Î A
§ A	transition	function	T(s,	a,	s’)

§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

§ A	reward	function	R(s,	a,	s’)	
§ Sometimes	just	R(s)	or	R(s’)

…
R(s33)	 =	-0.01

R(s42)	 =	-1.01

R(s43)	 =		0.99

Markov	Decision	Processes

§ An	MDP	is	defined	by:
§ A	set	of	states	s	Î S
§ A	set	of	actions	a	Î A
§ A	transition	function	T(s,	a,	s’)

§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

§ A	reward	function	R(s,	a,	s’)	
§ Sometimes	just	R(s)	or	R(s’),	e.g.	in	R&N

§ A	start	state
§ Maybe	a	terminal	state

§ MDPs	are	non-deterministic	search	problems
§ One	way	to	solve	them	is	with	expectimax search
§ We’ll	have	a	new	tool	soon
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What	is	Markov	about	MDPs?

§ “Markov”	generally	means	that	given	the	present	state,	the	
future	and	the	past	are	independent

§ For	Markov	decision	processes,	“Markov”	means	action	
outcomes	depend	only	on	the	current	state

§ This	is	just	like	search,	where	the	successor	function	can	only	
depend	on	the	current	state	(not	the	history)

Andrey Markov	
(1856-1922)

Policies

Optimal	policy	when	R(s,	a,	s’)	=	-0.03	
for	all	non-terminals	s

§ In	deterministic	single-agent	search	problems,	
we	wanted	an	optimal	plan,	or	sequence	of	
actions,	from	start	to	a	goal

§ For	MDPs,	we	want	an	optimal	policy	p*:	S	→	A
§ A	policy	p gives	an	action	for	each	state
§ An	optimal	policy	is	one	that	maximizes								

expected	utility	if	followed
§ An	explicit	policy	defines	a	reflex	agent

§ Expectimax didn’t	output	an	entire	policy
§ It	computed	the	action	for	a	single	state	only
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Optimal	Policies

R(s)	=	-2.0R(s)	=	-0.4

R(s)	=	-0.03R(s)	=	-0.01

Example:	Racing
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Example:	Racing
§ A	robot	car	wants	to	travel	far,	quickly
§ Three	states:	Cool,	Warm,	Overheated
§ Two	actions:	Slow,	Fast
§ Going	faster	gets	double	reward

§ Except…

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5	

0.5	

0.5	

0.5	

1.0	

1.0	

+1	

+1	

+1	

+2	

+2	

-10

Racing:	Search	Tree

Might	be	generated	with	ExpectiMax,	but	…?
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MDP	Search	Trees
§ Each	MDP	state	projects	an	expectimax-like	search	tree

a

s

s’

s,	a

(s,a,s’)	called	a	transition

T(s,a,s’)	=	P(s’|s,a)

R(s,a,s’)
s,a,s’

s	is	a	state

(s,	a)	is	a	q-
state

Utilities	of	Sequences
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Utilities	of	Sequences

§ What	preferences	should	an	agent	have	over	reward	sequences?

§ More	or	less?

§ Now	or	later?

[1,	2,	2] [2,	3,	4]or

[0,	0,	1] [1,	0,	0]or

Discounting

§ It’s	reasonable	to	maximize	the	sum	of	rewards
§ It’s	also	reasonable	to	prefer	rewards	now	to	rewards	later
§ One	solution:	values	of	rewards	decay	exponentially

Worth	Now Worth	Next	Step Worth	In	Two	Steps
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Discounting

§ How	to	discount?
§ Each	time	we	descend	a	level,	we	

multiply	by	the	discount

§ Why	discount?
§ Sooner	rewards	probably	do	have	

higher	utility	than	later	rewards
§ Also	helps	our	algorithms	converge

§ Example:	discount	of	0.5
§ U([1,2,3])	=	1*1	+	0.5*2	+	0.25*3
§ U([1,2,3])	<	U([3,2,1])

Stationary	Preferences

§ Theorem:	if	we	assume	stationary	preferences:

§ Then:	there	are	only	two	ways	to	define	utilities

§ Additive	utility:

§ Discounted	utility:
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Quiz:	Discounting

§ Given:

§ Actions:	East,	West,	and	Exit	(only	available	in	exit	states	a,	e)
§ Transitions:	deterministic

§ Quiz	1:	For	g =	1,	what	is	the	optimal	policy?

§ Quiz	2:	For	g =	0.1,	what	is	the	optimal	policy?

§ Quiz	3:	For	which	g are	West	and	East	equally	good	when	in	state	d?

Infinite	Utilities?!

§ Problem:	What	if	the	game	lasts	forever?		Do	we	get	infinite	rewards?

§ Solutions:
§ Finite	horizon:	(similar	to	depth-limited	search)

§ Terminate	episodes	after	a	fixed	T	steps	(e.g.	life)
§ Gives	nonstationary policies	(p depends	on	time	left)

§ Discounting:	use	0	<	g <	1

§ Smaller	gmeans	smaller	“horizon” – shorter	term	focus

§ Absorbing	state:	guarantee	that	for	every	policy,	a	terminal	state	will	eventually	
be	reached	(like	“overheated” for	racing)
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Recap:	Defining	MDPs

§ Markov	decision	processes:
§ Set	of	states	S
§ Start	state	s0
§ Set	of	actions	A
§ Transitions	P(s’|s,a)	(or	T(s,a,s’))
§ Rewards	R(s,a,s’)	(and	discount	g)

§ MDP	quantities	so	far:
§ Policy	=	Choice	of	action	for	each	state
§ Utility	=	sum	of	(discounted)	rewards

a

s

s,	a

s,a,s’
s’


