

Logistics

- PS 2 due today
- Midterm in one week
- Covers all material through value iteration (wed / fri)
- Closed book
- You may bring one $8.5 \times 11^{\prime \prime}$ double-sided sheet of paper

Outline

- Adversarial Games
- Minimax search
- $\alpha-\beta$ search
- Evaluation functions
- Multi-player, non-0-sum
- Stochastic Games
- Expectimax

- Markov Decision Processes
- Reinforcement Learning

Agent vs. Environment

- An agent is an entity that perceives and acts.
- A rational agent selects actions that maximize its utility function.

Deterministic vs. stochastic
Fully observable vs. partially observable

Rational Preferences

The Axioms of Rationality

```
Orderability
    (A\succB)\vee}(B\succA)\vee(A~B
Transitivity
    (A\succB)}\wedge(B\succC)=>(A\succC
Continuity
    A\succB\succC=>\existsp[p,A;1-p,C]~B
Substitutability
    A~B=>[p,A; 1-p,C]~[p,B;1-p,C]
Monotonicity
    A\succB=>
        (p\geqq}\Leftrightarrow[p,A;1-p,B]\succeq[q,A;1-q,B]
```


Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem [Ramsey, 1931; von Neumann \& Morgenstern, 1944]
- Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$
\begin{aligned}
& U(A) \geq U(B) \Leftrightarrow A \succeq B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
\end{aligned}
$$

- I.e. values assigned by U preserve preferences of both prizes and lotteries!

- Maximum expected utility (MEU) principle:
- Choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

Human Utilities

Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery L = [p, \$X; (1-p), \$Y]
- The expected monetary value $\mathrm{EMV}(\mathrm{L})$ is $\mathrm{p}^{*} \mathrm{X}+(1-\mathrm{p})^{*} \mathrm{Y}$

- $U(L)=p^{*} U(\$ X)+(1-p) * U(\$ Y)$
- Typically, $\mathrm{U}(\mathrm{L})<\mathrm{U}(\mathrm{EMV}(\mathrm{L}))$
- In this sense, people are risk-averse
- When deep in debt, people are risk-prone

Example: Insurance

Consider the lottery [0.5, \$1000; 0.5, \$0]

- What is its expected monetary value? (\$500)
- What is its certainty equivalent?
- Monetary value acceptable in lieu of lottery

- \$400 for most people
- Difference of $\$ 100$ is the insurance premium
- There's an insurance industry because people will pay to reduce their risk
- If everyone were risk-neutral, no insurance needed!
- It's win-win: you'd rather have the $\$ 400$ and the insurance company would rather have the lottery (their utility curve is flat and they have many lotteries)

Non-Deterministic Search

Example: Grid World

- A maze-like problem
- The agent lives in a grid
- Walls block the agent's path
- Noisy movement: actions do not always go as planned
- 80% of the time, the action North takes the agent North (if there is no wall there)
- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step

- Small "living" reward each step (can be negative)
- Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function $T\left(s, a, s^{\prime}\right)$
- Probability that a from s leads to s', i.e., P(s' $\mid \mathrm{s}, \mathrm{a})$
- Also called the model or the dynamics

T is a Big Table!
$11 \times 4 \times 11=484$ entries

For now, we give this as input to the agent

Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function $T\left(s, a, s^{\prime}\right)$
- Probability that a from s leads to s', i.e., P(s'|s, a)
- Also called the model or the dynamics
- A reward function $R\left(s, a, s^{\prime}\right)$

Cost of breathing

R is also a Big Table!
For now, we also give this to the agent

Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function $T\left(s, a, s^{\prime}\right)$
- Probability that a from s leads to s', i.e., P(s' $\mid \mathrm{s}, \mathrm{a})$
- Also called the model or the dynamics
- A reward function $R\left(s, a, s^{\prime}\right)$
- Sometimes just R(s) or R(s')

Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function $T\left(s, a, s^{\prime}\right)$
- Probability that a from s leads to s', i.e., $P\left(s^{\prime} \mid s, a\right)$
- Also called the model or the dynamics
- A reward function $R\left(s, a, s^{\prime}\right)$
- Sometimes just R(s) or R(s'), e.g. in R\&N
- A start state
- Maybe a terminal state

- MDPs are non-deterministic search problems
- One way to solve them is with expectimax search
- We'll have a new tool soon

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$
\begin{aligned}
& P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}, S_{t-1}=s_{t-1}, A_{t-1}, \ldots S_{0}=s_{0}\right) \\
& \quad= \\
& P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}\right)
\end{aligned}
$$

Andrey Markov
(1856-1922)

- This is just like search, where the successor function can only depend on the current state (not the history)

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^{*}: S \rightarrow A$
- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent
- Expectimax didn't output an entire policy

Optimal policy when $R\left(s, a, s^{\prime}\right)=-0.03$ for all non-terminals s

- It computed the action for a single state only

Optimal Policies

$R(s)=-0.01$

-	-	-	回
1		A	\square
1	-	-	-

$R(s)=-0.03$

$R(s)=-2.0$

Example: Racing

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward
- Except...

Utilities of Sequences

Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? $\quad[1,2,2]$ or $[2,3,4]$
- Now or later?
$[0,0,1]$
or
[1, 0, 0]

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

1
Worth Now

γ
Worth Next Step

Worth In Two Steps

Discounting

- How to discount?
- Each time we descend a level, we multiply by the discount
- Why discount?
- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge
- Example: discount of 0.5
- $U([1,2,3])=1^{*} 1+0.5^{*} 2+0.25^{*} 3$
- $U([1,2,3])<U([3,2,1])$

Stationary Preferences

- Theorem: if we assume stationary preferences:

$$
\begin{aligned}
{\left[a_{1}, a_{2}, \ldots\right] } & \succ\left[b_{1}, b_{2}, \ldots\right] \\
& \Uparrow \\
{\left[r, a_{1}, a_{2}, \ldots\right] } & \succ\left[r, b_{1}, b_{2}, \ldots\right]
\end{aligned}
$$

- Then: there are only two ways to define utilities
- Additive utility: $\quad U\left(\left[r_{0}, r_{1}, r_{2}, \ldots\right]\right)=r_{0}+r_{1}+r_{2}+\cdots$
- Discounted utility: $U\left(\left[r_{0}, r_{1}, r_{2}, \ldots\right]\right)=r_{0}+\gamma r_{1}+\gamma^{2} r_{2} \ldots$

Quiz: Discounting

- Given:

10				1				
a b c d								e

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma=1$, what is the optimal policy?

- Quiz 2: For $\gamma=0.1$, what is the optimal policy?

10				1

- Quiz 3: For which γ are West and East equally good when in state d?

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
- Finite horizon: (similar to depth-limited search)
- Terminate episodes after a fixed T steps (e.g. life)
- Gives nonstationary policies (π depends on time left)
- Discounting: use $0<\gamma<1$

$$
U\left(\left[r_{0}, \ldots r_{\infty}\right]\right)=\sum_{t=0}^{\infty} \gamma^{t} r_{t} \leq R_{\max } /(1-\gamma)
$$

- Smaller γ means smaller "horizon" - shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- Markov decision processes:
- Set of states S
- Start state s_{0}
- Set of actions A
- Transitions P(s'|s,a) (or T(s,a, s'))
- Rewards R(s,a, s') (and discount γ)

- MDP quantities so far:
- Policy = Choice of action for each state
- Utility = sum of (discounted) rewards

