
10/19/16

1

CSE 473: Artificial Intelligence

Adversarial Search
Dan Weld

Based on slides from

Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer
(best illustrations from ai.berkeley.edu) 1

Outline
§ Adversarial Search

§ Minimax search
§ α-β search
§ Evaluation functions
§ Expectimax

§ Reminder:
§ Project 2 due in 5 days

10/19/16

2

Types of Games

stratego

Number of Players? 1, 2, …?

Deterministic Games

§ Many possible formalizations, one is:
§ States: S (start at s0)
§ Players: P={1...N} (usually take turns)
§ Actions: A (may depend on player / state)
§ Transition Function: S x A à S
§ Terminal Test: S à {t,f}
§ Terminal Utilities: S x Pà R

§ Solution for a player is a policy: S à A

10/19/16

3

Tic-tac-toe Game Tree

Minimax Values

+
8

-10-5-8

States	Under	Agent’s	Control:

Terminal	States:

States	Under	Opponent’s	Control:

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

10/19/16

4

Minimax Implementation

def	min-value(state):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state)

v	=	min(v,	max-value(c))
return	v

def	max-value(state):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state)

v	=	max(v,	min-value(c))
return	v

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Need Base case for recursion

a-b Pruning Example

3 £2

³3

Progress of search…

Min:

Max:

Doesn’t matter!
Don’t need to evaluate

? ?

10/19/16

5

Alpha-Beta Quiz

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Search depth-first
Left to right
Order is important

Do all nodes matter?

Min:

Max:

Alpha-Beta Quiz 2

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Search depth-first
Left to right
Order is important
Do all nodes matter?

Min:

Max:

Max:

10/19/16

6

a-b Pruning

§ a is MAX’s best choice on
path to root

§ If n becomes worse than a,
MAX will avoid it, so can
stop considering n’s other
children

§ Define b similarly for MIN

Player

Opponent

Player

Opponent

α

n

Min-Max Implementation

def	min-val(state):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c))

return	v

def max-val(state):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c))

return	v

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

10/19/16

7

Alpha-Beta Implementation

def	min-val(state	,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c,	α,	β))

return	v

def max-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c,	α,	β))

return	v

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Implementation

def	min-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c,	α,	β))
if	v	≤	α return	v
β	=	min(β,	v)

return	v

def max-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c,	α,	β))
if	v	≥	β return	v
α =	max(α,	v)

return	v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

10/19/16

8

Alpha-Beta Pruning Example

12 5 13 2

8

14

≥8

3 ≤2 ≤1

3

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

α=-¥
β=+¥

α=-¥
β=+¥

α=-¥
β=+ ¥

α=-¥
β=3

α=-¥
β=3

α=-¥
β=3

α=-¥
β=3

α=-¥
β=3

α=3
β=+¥

α=3
β=+¥

α=3
β=+¥

α=3
β=+¥

α=3
Β=+¥

α=3
β=+¥ α=3

β=14
α=3
β=5

α=3
β=1

At max node:
Prune if v³b;
Else update a = max(a,v)

At min node:
Prune if v£a;
Else update b = min(b,v)

Alpha-Beta Pruning Properties
§ This pruning has no effect on final result at the root

§ Values of intermediate nodes might be wrong!
§ but, they are correct bounds

§ Good child ordering improves effectiveness of pruning

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!
§ (But complete search of complex games, e.g. chess, is still hopeless…

10/19/16

9

Resource Limits
§ Problem: In realistic games, cannot

search to leaves!
§ Solution: Depth-limited search

§ Instead, search only to a limited depth
in the tree

§ Replace terminal utilities with an
evaluation function for non-terminal
positions

§ Example:
§ Suppose we have 3 min/move, can

explore 1M nodes / sec
§ So can check 200M nodes per move
§ a-b reaches about depth 10 à decent

chess program

§ Guarantee of optimal play is gone
§ More plies makes a BIG difference

? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Depth Matters
§ Evaluation functions are

always imperfect
§ The deeper in the tree the

evaluation function is
buried, the less the quality
of the evaluation function
matters

§ Good example of the
tradeoff between
complexity of features and
complexity of computation

[Demo:	depth	limited	(L6D4,	
L6D5)]

10/19/16

10

Iterative Deepening
Iterative deepening uses DFS as a

subroutine:

1. Do a DFS which only searches for
paths of length 1 or less. (DFS gives
up on any path of length 2)

2. If “1” failed, do a DFS which only
searches paths of length 2 or less.

3. If “2” failed, do a DFS which only
searches paths of length 3 or less.

….and so on.

Creates an anytime algorithm

…
b

Heuristic Evaluation Function
§ Function which scores non-terminals

§ Ideal function: returns the true utility of the position
§ In practice: need a simple, fast approximation

§ typically weighted linear sum of features:
§ e.g. f1(s) = (num white queens – num black queens), etc.

10/19/16

11

Evaluation for Pacman

What features would be good for Pacman?

Which algorithm?

QuickTime™ and a
GIF decompressor

are needed to see this picture.

α-β, depth 4, simple eval fun

10/19/16

12

Which algorithm?

QuickTime™ and a
GIF decompressor

are needed to see this picture.

α-β, depth 4, better eval fun

Why Pacman Starves

§ He knows his score will go
up by eating the dot now

§ He knows his score will go
up just as much by eating
the dot later on

§ There are no point-scoring
opportunities after eating
the dot

§ Therefore, waiting seems
just as good as eating

