CSE 473: Artificial Intelligence

Adversarial Search
Dan Weld

Based on slides from

Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer
(best illustrations from ai.berkeley.edu)

Outline

= Adversarial Search
» Minimax search
» a-f search
= Evaluation functions
» Expectimax

= Reminder:
» Project 2 due in 5 days

10/19/16

perfect
information

imperfect
information

deterministic

chess, checkers,
go, othello

stratego

Types of Games

chance

backgammon,
monopoly

bridge, poker,
scrabble, nuclear
war

Number of Players? 1, 2, ...?

Deterministic Games

» Many possible formalizations, one is:
= States: S (start at sg)
= Players: P={1...N} (usually take turns)
= Actions: A (may depend on player / state)

= Transition Function: SxA > S

= Terminal Test: S - {t,f}
= Terminal Utilities: S x P> R

= Solution for a player is a policy: S > A

10/19/16

Tic-tac-toe Game Tree

MAX (X)
X X X ‘
MIN (0) X X X
X X X
MAX (X) o]
X|O|X X|0 X|0
MIN (0) X X
O‘ X X C‘) X X (‘3 X ‘
TERMINAL O|X 0|0(X X
o X| X0 X|0|0
Utility -1 0 +1
States Under Agent’s Control: States Under Opponent’s Control:

V(s)= max V(s

V()= min V(s
s’ €successors(s) \ s€successors(s’)

Terminal States:
V(s) = known

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

10/19/16

Minimax Implementation

Need Base case for recursion

def max-value(state): //\%

: f min-value(state):
if leaf?(state), return U(state) if leaf?(state), return U(state)
initialize v = -0

' . initialize v = +o
for each cin children(state) for each cin children(state)

v = max(v, min-value(c)) v = min(v, max-value(c))
return v \ return v
V()= max V(s) V()= min V(s
s’ Esuccessors(s) s€successors(s’)

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

o-B Pruning Example

Max:

Min:

3 12 8 2 2 2 14 5 2

j Doesn’t matter!

Don’t need to evaluate

Progress of search...

10/19/16

Alpha-Beta Quiz

Search depth-first
Left to right

Max: Order is important
Do all nodes matter?
Min:
10 50
Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu
Alpha-Beta Quiz 2
Search depth-first
Left to right
Max: Order is important
Do all nodes matter?,
Min:
Max:

10

6

100

1

2

20 4

Slide from Dan Klein & Pieter Abbeel - ai berkelev.edu

10/19/16

a-B Pruning

= o is MAX'’s best choice on

path to root Player
= |f n becomes worse than «,
. Ly Opponent

MAX will avoid it, so can .

stop considering n’s other

children
Player
Opponent

= Define B similarly for MIN

Min-Max Implementation

N

Kreturn v / Kreturn v

def max-val(state): def min-val(state):
if leaf?(state), return U(state) if leaf?(state), return U(state)
initialize v = -0 initialize v = +o0
for each c in children(state): for each c in children(state):
v = max(v, min-val(c) v = min(v, max-val(c)

\

/

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

10/19/16

Alpha-Beta Implementation

B: MIN’s best option on path to root

[a: MAX’s best option on path to root]

VS

def max-val(state, a, B):
if leaf?(state), return U(state)
initialize v = -0
for each c in children(state):
v = max(v, min-val(c, a, B))

Kreturn v /

def min-val(state , a, B):
if leaf?(state), return U(state)
initialize v = +oo
for each c in children(state):
v = min(v, max-val(c, a, B))

Kreturn v

\

)

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Alpha-Beta Implementation

B: MIN’s best option on path to root

[a: MAX’s best option on path to root J

N

def max-val(state, a, B):
if leaf?(state), return U(state)
initialize v = -0
for each c in children(state):
v = max(v, min-val(c, a, B))
if v> B returnv
o = max(a, v)

Kreturn v /

def min-val(state, a, B):
if leaf?(state), return U(state)
initialize v = +o0
for each c in children(state):
v = min(v, max-val(c, a, B))
if v<areturnv

B = min(B, v)

Kreturn v

\

)

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

10/19/16

Alpha-Beta Pruning Example

At max node: g:; At min node:

Prune if v<q;
Else update = min(B,v)

Prune if v>p;
Else update a = max(a.,v)

a=-o0 a=- ais MAX’s best alternative here or above
B=3 p=3 B is MIN’s best alternative here or above

Alpha-Beta Pruning Properties

= This pruning has no effect on final result at the root

» Values of intermediate nodes might be wrong!
= but, they are correct bounds

= Good child ordering improves effectiveness of pruning

= With “perfect ordering”™:
= Time complexity drops to O(b™?2)
= Doubles solvable depth!
= (But complete search of complex games, e.g. chess, is still hopeless...

10/19/16

Resource Limits

Problem: In realistic games, cannot
search to leaves!

Solution: Depth-limited search

= Instead, search only to a limited depth
in the tree

= Replace terminal utilities with an
evaluation function for non-terminal
positions

Example:

= Suppose we have 3 min/move, can
explore 1M nodes / sec

= So can check 200M nodes per move

» o-f reaches about depth 10 > decent
chess program

Guarantee of optimal play is gone
More plies makes a BIG difference

Depth Matters

Evaluation functions are
always imperfect

The deeper in the tree the
evaluation function is
buried, the less the quality
of the evaluation function
matters

Good example of the
tradeoff between
complexity of features and
complexity of computation

[Demo: depth limited (L6D4,

10/19/16

Iterative Deepening

Iterative deepening uses DFS as a b
subroutine:

1. Do a DFS which only searches for
paths of length 1 or less. (DFS gives
up on any path of length 2)

2. If “1” failed, do a DFS which only

searches paths of length 2 or less.

3. If “2” failed, do a DFS which only
searches paths of length 3 or less.

....and so on.

Creates an anytime algorithm

Heuristic Evaluation Function

= Function which scores non-terminals

Black to move 4 N 7 A White to move

White slightly better Black winning

= |deal function: returns the true utility of the position
= |n practice: need a simple, fast approximation
= typically weighted linear sum of features:
» e.g. f1(s) = (num white queens — num black queens), etc.

Eval(s) = w1 f1(s) +wof2(s) + ... + wnfn(s)

10/19/16

10

Evaluation for Pacman

What features would be good for Pacman?

Eval(s) = w1 f1(s) + woaf2(s) + ... + wnfn(s)

Which algorithm?

a-B, depth 4, simple eval fun

QuickTime™ and a
GIF decompressor
are needed to see this picture.

10/19/16

11

Which algorithm?
a-B, depth 4, better eval fun

QuickTime™ and a
GIF decompressor
are needed to see this picture.

Why Pacman Starves

= He knows his score will go
up by eating the dot now

= He knows his score will go
up just as much by eating
the dot later on

» There are no point-scoring
opportunities after eating
the dot

= Therefore, waiting seems
just as good as eating

10/19/16

12

