CSE 473: Artificial Intelligence

Adversarial Search

Dan Weld

Based on slides from
Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer (best illustrations from ai.berkeley.edu)

Outline

- Adversarial Search
- Minimax search
- $\alpha-\beta$ search
- Evaluation functions
- Expectimax
- Reminder:

- Project 2 due in 5 days

Types of Games

deterministic
chance
perfect information
chess, checkers, go, othello
backgammon, monopoly
imperfect information
stratego
:---:
scrabble, nuclear
war

Number of Players? 1, 2, \ldots ?

Deterministic Games

- Many possible formalizations, one is:
- States: S (start at s_{0})
- Players: $\mathrm{P}=\{1$...N $\}$ (usually take turns)
- Actions: A (may depend on player / state)
- Transition Function: S x A \rightarrow S
- Terminal Test: S $\rightarrow\{t, f\}$
- Terminal Utilities: $\mathrm{S} \times \mathrm{P} \rightarrow \mathrm{R}$
- Solution for a player is a policy: $S \rightarrow A$

Tic-tac-toe Game Tree

Minimax Values

States Under Agent's Control: States Under Opponent's Control:

Terminal States:

$$
V(s)=\text { known }
$$

Slide from Dan Klein \& Pieter Abbeel - ai.berkeley.edu

Minimax Implementation

def max-value(state):
if leaf?(state), return U(state)
initialize $v=-\infty$
for each c in children(state) $v=\max (v$, min-value(c))
return v

$$
V(s)=\max _{s^{\prime} \in \operatorname{successors}(s)} V\left(s^{\prime}\right)
$$

def min-value(state):
if leaf?(state), return U(state) initialize $v=+\infty$ for each c in children(state) $v=\min (v$, max-value(c)) return v

$$
V\left(s^{\prime}\right)=\min _{s \in \text { sucessoror }\left(s^{\prime}\right)} V(s)
$$

$\alpha-\beta$ Pruning Example

Max:

Min:

Alpha-Beta Quiz

Min:

$\alpha-\beta$ Pruning

- α is MAX's best choice on path to root
- If n becomes worse than α, MAX will avoid it, so can stop considering n's other children
- Define β similarly for MIN

Opponent

Min-Max Implementation

Alpha-Beta Implementation

a: MAX's best option on path to root
 β : MIN's best option on path to root

def max-val(state, α, β):
if leaf?(state), return U(state) initialize $v=-\infty$
for each c in children(state):
$v=\max (v, \min -v a l(c, \alpha, \beta))$
def min-val(state , α, β):
if leaf?(state), return U(state) initialize $v=+\infty$ for each c in children(state):

$$
v=\min (v, \max -v a l(c, \alpha, \beta))
$$

return v

Alpha-Beta Implementation

a: MAX's best option on path to root
β : MIN's best option on path to root
def max-val(state, α, β):
if leaf?(state), return U(state) initialize $v=-\infty$
for each c in children(state):
$v=\max (v, \min -\mathrm{val}(c, \alpha, \beta))$
if $v \geq \beta$ return v
$\alpha=\max (\alpha, v)$
return v
def min-val(state, α, β):
if leaf?(state), return U(state) initialize $v=+\infty$
for each c in children(state):

$$
v=\min (v, \max -v a l(c, \alpha, \beta))
$$

$$
\text { if } v \leq \alpha \text { return } v
$$

$$
\beta=\min (\beta, v)
$$

return v

Alpha-Beta Pruning Example

Prune if $\mathrm{v} \geq \beta$;
Else update $\alpha=\max (\alpha, v)$

At min node:
α is MAX's best alternative here or above β is MIN's best alternative here or above

Alpha-Beta Pruning Properties

- This pruning has no effect on final result at the root
- Values of intermediate nodes might be wrong!
- but, they are correct bounds
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
- Time complexity drops to $O\left(b^{m / 2}\right)$
- Doubles solvable depth!
- (But complete search of complex games, e.g. chess, is still hopeless...

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
- Instead, search only to a limited depth in the tree
- Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
- Suppose we have $3 \mathrm{~min} / \mathrm{move}$, can explore 1M nodes / sec
- So can check 200M nodes per move
- $\alpha-\beta$ reaches about depth $10 \rightarrow$ decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference

Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality
 of the evaluation function matters
- Good example of the tradeoff between complexity of features and complexity of computation

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of length 1 or less. (DFS gives up on any path of length 2)
2. If " 1 " failed, do a DFS which only searches paths of length 2 or less.

3. If "2" failed, do a DFS which only searches paths of length 3 or less.
....and so on.

Creates an anytime algorithm

Heuristic Evaluation Function

- Function which scores non-terminals

- Ideal function: returns the true utility of the position
- In practice: need a simple, fast approximation
- typically weighted linear sum of features:
- e.g. $f_{1}(s)=$ (num white queens - num black queens), etc.
$\operatorname{Eval}(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s)$

Evaluation for Pacman

What features would be good for Pacman?

$$
\operatorname{Eval}(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s)
$$

Which algorithm?

$\alpha-\beta$, depth 4 , simple eval fun

QuickTime ${ }^{\text {TM }}$ and a
are needed to see this picture.

Which algorithm?

$\alpha-\beta$, depth 4 , better eval fun

Why Pacman Starves

- He knows his score will go up by eating the dot now
- He knows his score will go up just as much by eating the dot later on

- There are no point-scoring opportunities after eating the dot
- Therefore, waiting seems just as good as eating

