
10/17/16

1

CSE 473: Artificial Intelligence

Adversarial Search
Dan Weld

Based on slides from

Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer
(best illustrations from ai.berkeley.edu) 1

Outline
§ Adversarial Search

§ Minimax search
§ α-β search
§ Evaluation functions
§ Expectimax

§ Reminder:
§ Project 2 due in 7 days

10/17/16

2

Game Playing State-of-the-Art
1994: Checkers. Chinook ended 40-year-reign of human world champion
Marion Tinsley. Used search plus an endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions. Checkers is now solved!

Game Playing State-of-the-Art
1997: Chess. Deep Blue defeated human world champion Gary Kasparov
in a six-game match. Deep Blue examined 200 million positions per
second, used very sophisticated evaluation and undisclosed methods for
extending some lines of search up to 40 ply. Current programs are even
better, if less historic.

10/17/16

3

Game Playing State-of-the-Art
Go: b > 300! Programs use monte carlo tree search + pattern KBs

2015: AlphaGo beats European Go champion Fan Hui (2 dan) 5-0
2016: AlphaGo beats Lee Sedol (9 dan) 4-1

Game Playing State-of-the-Art
Othello: Human champions refuse to compete against computers.

10/17/16

4

Game Playing State-of-the-Art
§ Pacman: … unknown …

Types of Games

stratego

Number of Players? 1, 2, …?

10/17/16

5

Deterministic Games

§ Many possible formalizations, one is:
§ States: S (start at s0)
§ Players: P={1...N} (usually take turns)
§ Actions: A (may depend on player / state)
§ Transition Function: S x A à S
§ Terminal Test: S à {t,f}
§ Terminal Utilities: S x Pà R

§ Solution for a player is a policy: S à A

Previously: Single-Agent Trees

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

10/17/16

6

Previously: Value of a State
Non-Terminal	States:

8

2 0 2 6 4 6… … Terminal	States:

Value	of	a	state:	
The	best	
achievable	

outcome	(utility)	
from	that	state

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

10/17/16

7

Minimax Values

+
8

-10-5-8

States	Under	Agent’s	Control:

Terminal	States:

States	Under	Opponent’s	Control:

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Adversarial Search (Minimax)
§ Deterministic, zero-sum games:

§ Tic-tac-toe, chess, checkers
§ One player maximizes result
§ The other minimizes result

§ Minimax search:
§ A state-space search tree
§ Players alternate turns
§ Compute each node’s minimax

value: the best achievable
utility against a rational
(optimal) adversary

8 2 5 6

max

min2 5

5

Terminal	values:
part	of	the	game	

Minimax	values:
computed	recursively

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

10/17/16

8

Minimax Implementation

def	min-value(state):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state)

v	=	min(v,	max-value(c))
return	v

def	max-value(state):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state)

v	=	max(v,	min-value(c))
return	v

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Need Base case for recursion

Concrete Minimax Example

min

max

10/17/16

9

Minimax Example

min

max
A1

Quiz

Min:

Max:

9 1 8 5 4 3 2 7 8

10/17/16

10

Answer

Min:

Max:

9 1 8 5 4 3 2 7 8

1 3 2

3

Minimax Properties

§ Time complexity?

§ Space complexity?

10 10 9 100

max

min
§ O(bm)

§ O(bm)

§ For chess, b ~ 35, m ~ 100
§ Exact solution is completely infeasible
§ But, do we need to explore the whole tree?

§ Optimal?
§ Yes, against perfect player. Otherwise?

10/17/16

11

Do We Need to Evaluate Every Node?

Min:

Max:

Do We Need to Evaluate Every Node?

3

³3

Progress of search…

Min:

Max:

10/17/16

12

a-b Pruning Example

3 £2

³3

Progress of search…

Min:

Max:

a-b Pruning

§ General configuration
§ a is MAX’s best choice on

path to root
§ If n becomes worse than
a, MAX will avoid it, so
can stop considering n’s
other children

§ Define b similarly for MIN

Player

Opponent

Player

Opponent

α

n

10/17/16

13

Min-Max Implementation

def	min-val(state):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c))

return	v

def max-val(state):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c))

return	v

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Alpha-Beta Implementation

def	min-val(state	,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c,	α,	β))

return	v

def max-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c,	α,	β))

return	v

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

α: MAX’s best option on path to root
β: MIN’s best option on path to root

10/17/16

14

Alpha-Beta Implementation

def	min-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c,	α,	β))
if	v	≤	α return	v
β	=	min(β,	v)

return	v

def max-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c,	α,	β))
if	v	≥	β return	v
α =	max(α,	v)

return	v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

