
Clearer	Definition

Chess	as	a	CSP
Let’s define the 4-queens problem as a CSP with the variable Xi denoting the position
(row) of the queen on column i.

X1 = 1 X1 = 2

Remember the constraints: two queens attack each other when the are in the same row,
the same column or on the same diagonal. We want to place n=4 queens on the board so
no queen is attacking another.

CSP	Challenge	Question	1

Suppose we set X1 = 1

Show the effect of forward
checking on the domains of the
remaining variables
(I suggest crossing off values in the
lists below:)

X1 = 1

Domain X2 = {1, 2, 3, 4}
Domain X3 = {1, 2, 3, 4}
Domain X4 = {1, 2, 3, 4}

Answer	1

Forward checking will delete values from the domains of
all other variables, as shown

Question	2

Is this CSP now arc consistent?

(for the purposes of this question – assume that there is one constraint
between each pair of queens that rules out all attacks)

Answer	2

No, the constraint between X2 and X3 is not consistent with respect to X2
There exists a value in the domain of X2 (specifically X2=3) such that NO
value for X3 will work.
Furthermore, the constraint between X4 and X3 is not consistent with respect
to X4, because X4=3 also leaves X3 with no legal values

Question	3

Simulate the behavior of AC3 to make the CSP arc consistent
First subquestion, what goes on the queue?

Answer	4

For each pair of variables, you need to put a directed constraint.
I’ll write X2àX3 to mean the constraint wrt X2 (ie X2 is the tail)
For this example, let’s ignore constraints with X1 because those constraints
are consistent (as a result of forward checking) and can’t become inconsistent
because we’ve chose a single value for X1.
So the queue might be
<X2àX3, X2àX4, X3àX2, X3àX4, X4àX2, X4àX3>
We’ve already established that X2àX3 is inconsistent.
What does AC-3 do to fix this?

Answer	5

AC-3 deletes from the domain of … X2..
So now Domain(X2) = {4}
AC-3 also adds some more constraints onto the queue, X3àX2 and X4àX2,
but since they are already there there is no change. So the queue is
<X2àX4, X3àX2, X3àX4, X4àX2, X4àX3>

Is X2àX4 consistent?

Answer	6

Yep. Now the queue is
<X3àX2, X3àX4, X4àX2, X4àX3>

Is X3àX2 consistent?

Answer	7

Nope. We need to delete X3=4.
That means we need to add some stuff to the queue.
So what’s the queue become?

Answer	8

We add X2àX3 and X4àX3 but the latter was already there so we get
<X3àX4, X4àX2, X4àX3, X2àX3>

Now what happens when we process the next constraint?

Answer	9

X3àX4 is inconsistent so we need to remove X3=2, but now X3’s domain is
empty, which means that the CSP is unsolvable. So the very first decision to
Assign X1=1 was a mistake.
In fact, following the pseudocode, AC3 will keep running and remove some
more stuff – a bit pointless. But I’ll stop here.

Part	II	– Tree	structured	CSPs

A

B

C

D

E

F

Let’s color this!

Tree-Structured	CSPs
§ Algorithm	for	tree-structured	CSPs:

1. Order:	Choose	a	root	variable,	order	variables	so	that	parents	precede	children
2. Remove	backward:	For	i =	n	:	2,	apply	RemoveInconsistent(Parent(Xi),Xi)
3. Assign	forward:	For	i =	1	:	n,	assign	Xi consistently	with	Parent(Xi)

Tree-Structured	CSPs
§ Algorithm	for	tree-structured	CSPs:

1. Order:	Choose	a	root	variable,	order	variables	so	that	parents	precede	children

My choice to start with A as the root is arbitrary – could have started with anything else.
It also doesn’t matter if B comes before C in the ordering etc.

Question	10
§ Algorithm	for	tree-structured	CSPs:

1. Order:	Choose	a	root	variable,	order	variables	so	that	parents	precede	children
2. Remove	backward:	For	i =	n	:	2,	apply	RemoveInconsistent(Parent(Xi),Xi)

Suppose that the initial legal colors are as I show above
Simulate step 2 of the algorithm (I suggest cross off colors in the diagram above)

Answer	10
§ Algorithm	for	tree-structured	CSPs:

1. Order:	Choose	a	root	variable,	order	variables	so	that	parents	precede	children
2. Remove	backward:	For	i =	n	:	2,	apply	RemoveInconsistent(Parent(Xi),Xi)

When processing DàF, we need to remove blue from the domain of D
What about when we process DàE?

Answer	11
§ Algorithm	for	tree-structured	CSPs:

1. Order:	Choose	a	root	variable,	order	variables	so	that	parents	precede	children
2. Remove	backward:	For	i =	n	:	2,	apply	RemoveInconsistent(Parent(Xi),Xi)

When processing DàE, we don’t do anything.
We would only remove something from the parent, D, but red is consistent, because
we can make E green. So we just leave it as is.
What about BàD?

Answer	12
§ Algorithm	for	tree-structured	CSPs:

1. Order:	Choose	a	root	variable,	order	variables	so	that	parents	precede	children
2. Remove	backward:	For	i =	n	:	2,	apply	RemoveInconsistent(Parent(Xi),Xi)

When processing BàC, we don’t do anything.
What about AàB?

Answer	13
§ Algorithm	for	tree-structured	CSPs:

1. Order:	Choose	a	root	variable,	order	variables	so	that	parents	precede	children
2. Remove	backward:	For	i =	n	:	2,	apply	RemoveInconsistent(Parent(Xi),Xi)
3. Assign	forward:	For	i =	1	:	n,	assign	Xi consistently	with	Parent(Xi)

Right, we delete blue from A.
Now simulate step 3.
Any choice for A is ok. B will be blue. C can be red or green. D is red, E will be
green… It all works!!

