## Clearer Definition

## Definition: Arc consistency

- A constraint C_xy is said to be arc consistent wrt $x$ if for each value $v$ of $x$ there is an allowed value of $y$
- Similarly, we define that C_xy is arc consistent wrt y
- A binary CSP is arc consistent iff every constraint C_xy is arc consistent wrt x as well as y
- When a CSP is not arc consistent, we can make it arc consistent, e.g. by using AC3
-This is also called "enforcing arc consistency"


## Chess as a CSP

Let's define the 4-queens problem as a CSP with the variable Xi denoting the position (row) of the queen on column i .


Remember the constraints: two queens attack each other when the are in the same row, the same column or on the same diagonal. We want to place $n=4$ queens on the board so no queen is attacking another.

## CSP Challenge Question 1

Suppose we set X1 = 1
Show the effect of forward checking on the domains of the remaining variables

(I suggest crossing off values in the lists below:)

$$
\begin{aligned}
& \text { Domain X2 }=\{1,2,3,4\} \\
& \text { Domain X3 }=\{1,2,3,4\} \\
& \text { Domain X4 }=\{1,2,3,4\}
\end{aligned}
$$

## Answer 1



Forward checking will delete values from the domains of all other variables, as shown

## Question 2



Is this CSP now arc consistent?
(for the purposes of this question - assume that there is one constraint between each pair of queens that rules out all attacks)

## Answer 2



No, the constraint between X 2 and X 3 is not consistent with respect to X 2 There exists a value in the domain of $X 2$ (specifically $X 2=3$ ) such that NO value for X3 will work.
Furthermore, the constraint between X 4 and X 3 is not consistent with respect to X 4 , because $\mathrm{X} 4=3$ also leaves X 3 with no legal values

## Question 3



Simulate the behavior of AC3 to make the CSP arc consistent First subquestion, what goes on the queue?

## Answer 4



For each pair of variables, you need to put a directed constraint.
I'll write $\mathrm{X} 2 \rightarrow \mathrm{X} 3$ to mean the constraint wrt X 2 (ie X 2 is the tail)
For this example, let's ignore constraints with X 1 because those constraints are consistent (as a result of forward checking) and can't become inconsistent because we've chose a single value for X1.
So the queue might be
$<\mathrm{X} 2 \rightarrow \mathrm{X} 3, \mathrm{X} 2 \rightarrow \mathrm{X} 4, \mathrm{X} 3 \rightarrow \mathrm{X} 2, \mathrm{X} 3 \rightarrow \mathrm{X} 4, \mathrm{X} 4 \rightarrow \mathrm{X} 2, \mathrm{X} 4 \rightarrow \mathrm{X} 3>$
We've already established that $X 2 \rightarrow X 3$ is inconsistent.
What does AC-3 do to fix this?

## Answer 5



AC-3 deletes from the domain of ... X2..
So now Domain(X2) $=\{4\}$
AC-3 also adds some more constraints onto the queue, $X 3 \rightarrow X 2$ and $X 4 \rightarrow X 2$, but since they are already there there is no change. So the queue is $<\mathrm{X} 2 \rightarrow \mathrm{X} 4, \mathrm{X} 3 \rightarrow \mathrm{X} 2, \mathrm{X} 3 \rightarrow \mathrm{X} 4, \mathrm{X} 4 \rightarrow \mathrm{X} 2, \mathrm{X} 4 \rightarrow \mathrm{X} 3>$

Is $\mathrm{X} 2 \rightarrow \mathrm{X} 4$ consistent?

## Answer 6

Yep. Now the queue is
$<\mathrm{X} 3 \rightarrow \mathrm{X} 2, \mathrm{X} 3 \rightarrow \mathrm{X} 4, \mathrm{X} 4 \rightarrow \mathrm{X} 2, \mathrm{X} 4 \rightarrow \mathrm{X} 3>$

Is $X 3 \rightarrow X 2$ consistent?

## Answer 7



Nope. We need to delete $\mathrm{X} 3=4$.
That means we need to add some stuff to the queue.
So what's the queue become?

## Answer 8



We add $\mathrm{X} 2 \rightarrow \mathrm{X} 3$ and $\mathrm{X} 4 \rightarrow \mathrm{X} 3$ but the latter was already there so we get $<\mathrm{X} 3 \rightarrow \mathrm{X} 4, \mathrm{X} 4 \rightarrow \mathrm{X} 2, \mathrm{X} 4 \rightarrow \mathrm{X} 3, \mathrm{X} 2 \rightarrow \mathrm{X} 3>$

Now what happens when we process the next constraint?

## Answer 9


$\mathrm{X} 3 \rightarrow \mathrm{X} 4$ is inconsistent so we need to remove $\mathrm{X} 3=2$, but now $\mathrm{X3}$ 's domain is empty, which means that the CSP is unsolvable. So the very first decision to Assign X1=1 was a mistake.
In fact, following the pseudocode, AC3 will keep running and remove some more stuff - a bit pointless. But l'll stop here.

## Part II - Tree structured CSPs



## Tree-Structured CSPs

- Algorithm for tree-structured CSPs:

1. Order: Choose a root variable, order variables so that parents precede children
2. Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$
3. Assign forward: For $\mathrm{i}=1: \mathrm{n}$, assign $\mathrm{X}_{\mathrm{i}}$ consistently with Parent $\left(\mathrm{X}_{\mathrm{i}}\right)$

## Tree-Structured CSPs

- Algorithm for tree-structured CSPs:

1. Order: Choose a root variable, order variables so that parents precede children


My choice to start with A as the root is arbitrary - could have started with anything else.
It also doesn't matter if $B$ comes before $C$ in the ordering etc.

## Question 10

- Algorithm for tree-structured CSPs:

1. Order: Choose a root variable, order variables so that parents precede children
2. Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$


Suppose that the initial legal colors are as I show above Simulate step 2 of the algorithm (I suggest cross off colors in the diagram above)

## Answer 10

- Algorithm for tree-structured CSPs:

1. Order: Choose a root variable, order variables so that parents precede children
2. Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$


When processing $D \rightarrow F$, we need to remove blue from the domain of $D$ What about when we process $D \rightarrow E$ ?

## Answer 11

- Algorithm for tree-structured CSPs:

1. Order: Choose a root variable, order variables so that parents precede children
2. Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$


When processing $D \rightarrow E$, we don't do anything.
We would only remove something from the parent, D, but red is consistent, because we can make E green. So we just leave it as is.
What about $\mathrm{B} \rightarrow \mathrm{D}$ ?

## Answer 12

- Algorithm for tree-structured CSPs:

1. Order: Choose a root variable, order variables so that parents precede children
2. Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$


When processing $B \rightarrow C$, we don't do anything. What about $A \rightarrow B$ ?

## Answer 13

- Algorithm for tree-structured CSPs:

1. Order: Choose a root variable, order variables so that parents precede children
2. Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$
3. Assign forward: For $\mathrm{i}=1: \mathrm{n}$, assign $\mathrm{X}_{\mathrm{i}}$ consistently with Parent $\left(\mathrm{X}_{\mathrm{i}}\right)$


Right, we delete blue from $A$.
Now simulate step 3.
Any choice for $A$ is ok. B will be blue. C can be red or green. $D$ is red, $E$ will be green... It all works!!

