
1

CSE	473:	Artificial	Intelligence
Constraint	Satisfaction	Problems	III
Factored	(aka	Structured)	Search

[With	many	slides	by	Dan	Klein	and	Pieter	Abbeel (UC	Berkeley)	available	at	http://ai.berkeley.edu.]

Backtracking	Search

§ Backtracking	search	is	the	basic	uninformed	algorithm	for	solving	CSPs

§ Start	with	Depth	First	Search	
§ “backtracking	search”	IS	a	Kind	of	depth	first	search	with	these	2	details:

§ Idea	1:	One	variable	at	a	time
§ Variable	assignments	are	commutative,	so	fix	ordering
§ I.e.,	[WA	=	red	then	NT	=	green]	same	as	[NT	=	green	then	WA	=	red]
§ Only	need	to	consider	assignments	to	a	single	variable	at	each	step

§ Idea	2:	Check	constraints	as	you	go
§ I.e.	consider	only	values	which	do	not	conflict	previous	assignments
§ Might	have	to	do	some	computation	to	check	the	constraints
§ “Incremental	goal	test”

§ Can	solve	n-queens	for	n	» 25



2

Improving	Backtracking

§ General-purpose	ideas	give	huge	gains	in	speed

§ Ordering:
§ Which	variable	should	be	assigned	next?
§ In	what	order	should	its	values	be	tried?

§ Filtering:	Can	we	detect	inevitable	failure	early?

§ Structure:	Can	we	exploit	the	problem	structure?

§ Filtering:	Keep	track	of	domains	for	unassigned	variables	and	cross	off	bad	options
§ Forward	checking:	Cross	off	values	that	violate	a	constraint	when	added	to	the	existing	

assignment

Filtering:	Forward	Checking

WA
SA
NT Q

NSW
V

[Demo:	coloring	-- forward	checking]



3

Consistency	of	a	Single	Arc

§ An	arc	X	® Y	is	consistent iff for	every	x	in	the	tail	there	is	some	y	in	the	head	which	
could	be	assigned	without	violating	a	constraint

§ Forward	checking:	Enforcing	consistency	of	arcs	pointing	to	each	new	assignment

Delete	from	the	tail!

WA SA

NT Q

NSW

V

Arc	Consistency	of	an	Entire	CSP
§ A	simple	form	of	propagation	makes	sure	all	arcs	are	consistent:

§ Important:	If	X	loses	a	value,	neighbors	of	X	need	to	be	rechecked!
§ Arc	consistency	detects	failure	earlier than	forward	checking
§ Can	be	run	as	a	preprocessor	or after	each	assignment	
§ What’s	the	downside of	enforcing	arc	consistency?

WA SA
NT Q

NSW

V



4

AC-3	algorithm	for	Arc	Consistency

§ Runtime:	O(n2d3),	can	be	reduced	to	O(n2d2)
§ …	but	detecting	all possible	future	problems	is	NP-hard	– why?

[Demo:	CSP	applet	(made	available	by	aispace.org)	-- n-queens]

Limitations	of	Arc	Consistency

§ After	enforcing	arc	consistency:
§ Can	have	one	solution	left
§ Can	have	multiple	solutions	left
§ Can	have	no	solutions	left	

(and	not	know	it)

§ Even	with	Arc	Consistency	you	still	need	
backtracking	search!
§ Could	run	at	even	step	of	that	search
§ Usually	better	to	run	it	once,	before	search

What	went	
wrong	here?



5

Video	of	Demo	Arc	Consistency	– CSP	Applet	– n	Queens

Video	of	Demo	Coloring	– Backtracking	with	Forward	Checking	–
Complex	Graph



6

Video	of	Demo	Coloring	– Backtracking	with	Arc	Consistency	–
Complex	Graph

K-Consistency



7

K-Consistency
§ Increasing	degrees	of	consistency

§ 1-Consistency	(Node	Consistency):	Each	single	variable’s	domain	has	a	value	
which	meets	that	variables	unary	constraints

§ 2-Consistency	(Arc	Consistency):	For	each	pair	of	variables,	any	consistent	
assignment	to	one	can	be	extended	to	the	other

§ 3-Consistency	(Path	Consistency):	For	every	set	of	3	vars,	any	consistent	
assignment	to	2	of	the	variables	can	be	extended	to	the	third	var

§ K-Consistency:	For	each	k	nodes,	any	consistent	assignment	to	k-1	can	be	
extended	to	the	kth node.

§ Higher	k	more	expensive	to	compute

§ (You	need	to	know	the	algorithm	for	k=2	case:	arc	consistency)

Strong	K-Consistency

§ Strong	k-consistency:	also	k-1,	k-2,	…	1	consistent

§ Claim:	strong	n-consistency	means	we	can	solve	without	backtracking!

§ Why?
§ Choose	any	assignment	to	any	variable
§ Choose	a	new	variable
§ By	2-consistency,	there	is	a	choice	consistent	with	the	first
§ Choose	a	new	variable
§ By	3-consistency,	there	is	a	choice	consistent	with	the	first	2
§ …



8

Ordering

Backtracking	Search



9

Ordering:	Minimum	Remaining	Values

§ Variable	Ordering:	Minimum	remaining	values	(MRV):
§ Choose	the	variable	with	the	fewest	legal	left	values	in	its	domain

§ Why	min	rather	than	max?
§ Also	called	“most	constrained	variable”
§ “Fail-fast”	ordering

§ Tie-breaker	among	MRV	variables
§ What	is	the	very	first	state	to	color?	(All	have	3	values	remaining.)

§ Maximum	degree	heuristic:
§ Choose	the	variable	participating	in	the	most	constraints	on	remaining	
variables

§ Why	most	rather	than	fewest	constraints?

Ordering:	Maximum	Degree



10

Ordering:	Least	Constraining	Value

§ Value	Ordering:	Least	Constraining	Value
§ Given	a	choice	of	variable,	choose	the	least	
constraining	value

§ I.e.,	the	one	that	rules	out	the	fewest	values	in	
the	remaining	variables

§ Note	that	it	may	take	some	computation	to	
determine	this!		(E.g.,	rerunning	filtering)

§ Why	least	rather	than	most?

§ Combining	these	ordering	ideas	makes
1000	queens	feasible

Rationale	for	MRV,	MD,	LCV

§ We	want	to	enter	the	most	promising	branch,	but	we	also	want	
to	detect	failure	quickly

§ MRV+MD:
§ Choose	the	variable	that	is	most	likely	to	cause	failure
§ It	must	be	assigned	at	some	point,	so	if	it	is	doomed	to	fail,	better	to	
find	out	soon

§ LCV:
§ We	hope	our	early	value	choices	do	not	doom	us	to	failure
§ Choose	the	value	that	is	most	likely	to	succeed



11

Structure

Problem	Structure

§ Extreme	case:	independent	subproblems
§ Example:	Tasmania	and	mainland	do	not	interact

§ Independent	subproblems are	identifiable	as	
connected	components	of	constraint	graph

§ Suppose	a	graph	of	n	variables	can	be	broken	into	
subproblems of	only	c	variables:
§ Worst-case	solution	cost	is	O((n/c)(dc)),	linear	in	n
§ E.g.,	n	=	80,	d	=	2,	c	=20
§ 280 =	4	billion	years	at	10	million	nodes/sec
§ (4)(220)	=	0.4	seconds	at	10	million	nodes/sec



12

Tree-Structured	CSPs

§ Theorem:	if	the	constraint	graph	has	no	loops,	the	CSP	can	be	solved	in	O(n	d2)	time
§ Compare	to	general	CSPs,	where	worst-case	time	is	O(dn)

§ This	property	also	applies	to	probabilistic	reasoning	(later):	an	example	of	the	relation	
between	syntactic	restrictions	and	the	complexity	of	reasoning

Tree-Structured	CSPs
§ Algorithm	for	tree-structured	CSPs:

§ Order:	Choose	a	root	variable,	order	variables	so	that	parents	precede	children

§ Remove	backward:	For	i =	n	:	2,	apply	RemoveInconsistent(Parent(Xi),Xi)
§ Assign	forward:	For	i =	1	:	n,	assign	Xi consistently	with	Parent(Xi)

§ Runtime:	O(n	d2)		(why?)



13

Tree-Structured	CSPs

§ Claim	1:	After	backward	pass,	all	root-to-leaf	arcs	are	consistent
§ Proof:	Each	X®Y	was	made	consistent	at	one	point	and	Y’s	domain	could	not	have	

been	reduced	thereafter	(because	Y’s	children	were	processed	before	Y)

§ Claim	2:	If	root-to-leaf	arcs	are	consistent,	forward	assignment	will	not	backtrack
§ Proof:	Induction	on	position

§ Why	doesn’t	this	algorithm	work	with	cycles	in	the	constraint	graph?

§ Note:	we’ll	see	this	basic	idea	again	with	Bayes’	nets

Improving	Structure



14

Nearly	Tree-Structured	CSPs

§ Conditioning:	instantiate	a	variable,	prune	its	neighbors'	domains

§ Cutset conditioning:	instantiate	(in	all	ways)	a	set	of	variables	such	that	
the	remaining	constraint	graph	is	a	tree

§ Cutset size	c	gives	runtime	O(	(dc)	(n-c)	d2	),	very	fast	for	small	c

Cutset Conditioning

SA

SA SA SA

Instantiate	the	cutset
(all	possible	ways)

Compute	residual	CSP	
for	each	assignment

Solve	the	residual	CSPs	
(tree	structured)

Choose	a	cutset



15

Cutset Quiz

§ Find	the	smallest	cutset for	the	graph	below.

Local	Search	for	CSPs



16

Iterative	Algorithms	for	CSPs

§ Local	search	methods	typically	work	with	“complete”	states,	i.e.,	all	variables	assigned

§ To	apply	to	CSPs:
§ Take	an	assignment	with	unsatisfied	constraints
§ Operators	reassign	variable	values
§ No	fringe!		Live	on	the	edge.

§ Algorithm:	While	not	solved,
§ Variable	selection:	randomly	select	any	conflicted	variable
§ Value	selection:	min-conflicts	heuristic:

§ Choose	a	value	that	violates	the	fewest	constraints
§ I.e.,	hill	climb	with	h(n)	=	total	number	of	violated	constraints

Example:	4-Queens

§ States:	4	queens	in	4	columns	(44 =	256	states)
§ Operators:	move	queen	in	column
§ Goal	test:	no	attacks
§ Evaluation:	c(n)	=	number	of	attacks

[Demo:	n-queens	– iterative	improvement	(L5D1)]
[Demo:	coloring	– iterative	improvement]



17

Performance	of	Min-Conflicts

§ Given	random	initial	state,	can	solve	n-queens	in	almost	constant	time	for	arbitrary	
n	with	high	probability	(e.g.,	n	=	10,000,000)!

§ The	same	appears	to	be	true	for	any	randomly-generated	CSP	except in	a	narrow	
range	of	the	ratio

Summary:	CSPs

§ CSPs	are	a	special	kind	of	search	problem:
§ States	are	partial	assignments
§ Goal	test	defined	by	constraints

§ Basic	solution:	backtracking	search

§ Speed-ups:
§ Ordering
§ Filtering
§ Structure	(cutset conditioning)

§ Iterative	min-conflicts	is	often	effective	in	practice


