CSE 473: Artificial Intelligence

Constraint Satisfaction Problems Il
Factored (aka Structured) Search

[With many slides by Dan Klein and Pieter Abbeel (UC Berkeley) available at http://ai.berkeley.edu.]

What is Search For?

* Planning: sequences of actions
= The path to the goal is the important thing
= Paths have various costs, depths
= Assume little about problem structure

= |dentification: assignments to variables
= The goal itself is important, not the path
= All paths at the same depth (for some formulations)

Constraint Satisfaction Problems

= Standard search problems:
= State is a “black box”: arbitrary data structure
= Goal test can be any function over states
= Successor function can also be anything

= Constraint satisfaction problems (CSPs):
= A special subset of search problems
= State is defined by variables X; with values from a
domain D (sometimes D) depends on i)

= Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

= Making use of CSP formulation allows for
optimized algorithms

= Typical example of trading generality for utility (in this
case, speed)

CSP Example: Map Coloring

= Variables: WA, NT, Q, NSW, V, SA, T
* Domains: D = {red, green, blue}

= Constraints: adjacent regions must have different
colors

Implicit: WA #= NT
Explicit: (WA,NT) € {(red, green), (red, blue), ...}

= Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=blue, T=green}

Systematic Search to Solve CSP

States — partial assignments to variables

Operators — assign another variable

Initial State — no variables assigned

Goal State — all vars assigned & constraints satisfied

We’ll improve this basic method to exploit structure

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Start with Depth First Search
= “backtracking search” IS a Kind of depth first search with these 2 details:

Idea 1: One variable at a time
= Variable assighments are commutative, so fix ordering
= |.e., [WA =red then NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
= |.e. consider only values which do not conflict previous assignments
= Might have to do some computation to check the constraints
= “Incremental goal test”

Can solve n-queens for n ~ 25

Backtracking Example

~D

—]

o &

—

¢ &

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, esp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var+— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp], assignment, csp)
for each z,:t‘lezw in ORDER—DOMAIMUES(Uar, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

= What are the choice points?

[Demo: coloring -- backtracking]

Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
= Which variable should be assigned next?

= |n what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?

Filtering

Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options

= Forward checking: Cross off values that violate a constraint when added to the existing
assignment

WA NT Q NSW \ SA

[Demo: coloring -- forward checking]

Video of Demo Coloring — Backtracking with Forward Checking

Filtering: Constraint Propagation

= Forward checking only propagates information from assigned to unassigned
= |t doesn't catch when two unassigned variables have no consistent assignment:

WA NT Q NSW Vv SA
NT‘ (AR EE N[RN[R E[E]
S Tow (aam] P E|EOEEOE[EUE] DN

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
= Constraint propagation: reason from constraint to constraint

Consistency of a Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

p ‘\ NT |"q
SA
NSW
\"

WA NT Q NSW \' SA

Delete from the tail!

= Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

‘NT A WA NT Q NSW v SA
2 ew [— H| im | mH]| H|
V.

V\</

Important: If X loses a value, neighbors of X need to be rechecked!
= Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

What's the downside of enforcing arc consistency?

AC-3 algorithm for Arc Consistency

function AC-3(¢sp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, X», ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi. X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X}, in NEIGHBORS[X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff succeeds
removed < false
for each r in DoMAIN[X]] do
if no value y in DOMAIN[X]] allows (z,9) to satisfy the constraint X; < X
then delete 2 from DOMAIN[X]; removed — true
return removed

* Runtime: O(n%d3), can be reduced to O(n%d?)
= .. but detecting all possible future problems is NP-hard — why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

= After enforcing arc
consistency:

not know it)

= Can have one solution left
= Can have multiple solutions left
= Can have no solutions left (and

= Arc consistency still runs
inside a backtracking search!

Limitations of Arc Consistency

=
(o>
o
5 a8

What went
wrong here?

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]

