CSE 473: Artificial Intelligence

Constraint Satisfaction Problems

[With many slides by Dan Klein and Pieter Abbeel (UC Berkeley) available at http://ai.berkeley.edu.]

Previously

= Formulating problems as search
= Blind search algorithms
= Depth first
= Breadth first (uniform cost)
= [terative deepening
= Heuristic Search
= Best first
= Beam (Hill climbing)
" A*
= IDA*
= Heuristic generation
= Exact soln to a relaxed problem
= Pattern databases
= Local Search
= Hill climbing, random moves, random restarts, simulated annealing

What is Search For?

= Planning: sequences of actions
* The path to the goal is the important thing

= Paths have various costs, depths
= Assume little about problem structure

= |dentification: assignments to variables
* The goal itself is important, not the path
= All paths at the same depth (for some formulations)

Constraint Satisfaction Problems

CSPs are structured (factored) identification problems

Constraint Satisfaction Problems

= Standard search problems:
= State is a “black box”: arbitrary data structure
= Goal test can be any function over states
= Successor function can also be anything

= Constraint satisfaction problems (CSPs):
= A special subset of search problems
= State is defined by variables X; with values from a
domain D (sometimes D) depends on i)

= Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

= Making use of CSP formulation allows for
optimized algorithms

= Typical example of trading generality for utility (in this
case, speed)

Constraint Satisfaction Problems

= “Factoring” the state space

= Representing the state spacein a
knowledge representation

= Constraint satisfaction problems (CSPs):
= A special subset of search problems
= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

= Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

CSP Example: N-Queens

Is the
queen
at

. X;?
®» Formulation 1:

* Variables: X;;
* Domains: {0, 1}
= Constraints

Vi, j, k (Xij, X)) € {(0,0),(0,1),(1,0)}

Vi, gk (Xij, Xp;) € {(0,0),(0,1), (1,0)} S X, =N
Vi, g,k (Xij, Xiak,j41) € {(0,0),(0,1),(1,0)} 2

Vi, g,k (Xij, Xitr,j—k) € {(0,0),(0,1),(1,0)}

CSP Example: N-Queens

hat CO/Umn is th
e

) Que @1

= Formulation 2: N on fOrroWk?
= Variables: Qj . Q2
Q3
= Domains: {1,2,3,...N} Qa

= Constraints:

mplict: V4, j non-threatening(Q;, Q;)

Explicit: (Q1,Q2) € {(1,3),(1,4),...}

CSP Example: Sudoku

= Variables:

= Each (open) square

AN/ 8 \><7/ = Domains:
8|4 6l 1 /(/ = {1,2,..9}
5 117 (\ = Constraints:
1 318 9 N 9-way alldiff for each column
6 8 4 3 .
5 N E 1 9-way alldiff for each row
> > //' 9-way alldiff for each region
7 206/ (or can have a bunch
2 3 / of pairwise inequality
constraints)

= Variables:
® Domains:
= Constraints:

Propositional Logic

((P“’Q)/\r)V(P/\qANr)

propositional variables
{T, F}
logical formula

CSP Example: Map Coloring

= Variables: WA, NT, Q, NSW, V, SA, T
* Domains: D = {red, green, blue}

= Constraints: adjacent regions must have different
colors

Implicit: WA #= NT
Explicit: (WA,NT) € {(red, green), (red, blue), ...}

= Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=blue, T=green}

Constraint Graphs

Sl
O
O

Constraint Graphs

= Binary CSP: each constraint relates (at most) two @

variables & "‘@

= Binary constraint graph: nodes are variables, arcs @‘@

show constraints

= General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!

Example: Cryptarithmetic

= Variables:
FTUW RO X1 X X3

= Domains:
{0,1,2,3,4,5,6,7,8,9}

= Constraints:
alldiff(F, T, U, W, R,O)

O+0=R+10-X;

Chinese Constraint Network

Must be
Hot&Sour
Soup
No
Appetizer Peanuts
Total Cost

AN

< $40

No
/ Vegetable Peanuts
Spicy Not

Chow Mein

16

Real-World CSPs

= Assignment problems: e.g., who teaches what class
= Timetabling problems: e.g., which class is offered when and where?
= Hardware configuration

= Gate assignment in airports
= Space Shuttle Repair

= Transportation scheduling
= Factory scheduling

= .. lots more!

Example: The Waltz Algorithm

= The Waltz algorithm is for interpreting
line drawings of solid polyhedra as 3D
objects

= An early example of an Al computation
posed as a CSP

Waltz on Simple Scenes

= Assume all objects:
= Have no shadows or cracks
= Three-faced vertices

= “General position”: no junctions change with
small movements of the eye.

= Then each line on image is one of the
following:

= Boundary line (edge of an object) (>) with right
hand of arrow denoting “solid” and left hand
denoting “space”

* |nterior convex edge (+)
® |nterior concave edge (-)

Legal Junctions

= Only certain junctions are physically possible

= How can we formulate a CSP to label an image?
= Variables: edges

= Domains: >, <, +, -
= Constraints: legal junction types

S <
NE TV
S A
<+ %

*6'—6
/Fﬁ

%Hif{

Slight Problem: Local vs Global Consistency

L_—

10

Varieties of CSPs

Varieties of CSP Variables

= Discrete Variables
= Finite domains
= Size d means O(d") complete assignments

= E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)
= Infinite domains (integers, strings, etc.)
= E.g., job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

= Continuous variables
= E.g., start/end times for Hubble Telescope observations

= Linear constraints solvable in polynomial time by linear
program methods (see CSE 521 for a bit of LP theory)

11

Varieties of CSP Constraints

= Varieties of Constraints

= Unary constraints involve a single variable (equivalent to
reducing domains), e.g.:

SA # green
= Binary constraints involve pairs of variables, e.g.:

SA £ WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

= Preferences (soft constraints):
= E.g., redis better than green
= Often representable by a cost for each variable assignment
= Gives constrained optimization problems
= (We'll ignore these until we get to Bayes’ nets)

Solving CSPs

12

= States

= Operators
= |nitial State
= Goal State

CSP as Search

Standard Depth First Search

D

—f§ —

e g
T

i%‘l

13

Standard Search Formulation

Standard search formulation of CSPs

States defined by the values assigned
so far (partial assignments)
= |nitial state: the empty assignment, {}

= Successor function: assign a value to an
unassigned variable

= Goal test: the current assignment is
complete and satisfies all constraints

We’'ll start with the straightforward,
naive approach, then improve it

Backtracking Search

14

Backtracking Search

= Backtracking search is the basic uninformed algorithm for solving CSPs

= |dea 1: One variable at a time
= Variable assighnments are commutative, so fix ordering
= |.e., [WA =red then NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

= |dea 2: Check constraints as you go
= |.e. consider only values which do not conflict previous assignments
= Might have to do some computation to check the constraints
= “Incremental goal test”

= Depth-first search with these two improvements
is called backtracking search

= Can solve n-queens for n = 25

Backtracking Example

D

—f —

¢ ¢ ¢

—

-
— T~

s or

15

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var<«— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp), assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

= What are the choice points?

[Demo: coloring -- backtracking]

Backtracking Search

= Kind of depth first search
" |s it complete?

16

Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
= Which variable should be assigned next?

= |n what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?

Filtering

17

Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options

= Forward checking: Cross off values that violate a constraint when added to the existing

assignment

NT| Q
WA Hs A T
vV
WA NT Q NSW \' SA

[Demo: coloring -- forward checking]

18

