
10/5/2016

1

CSE 473: Artificial Intelligence
Autumn 2016

Search: Heuristics and Pattern DBs

With slides from

Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Travis Mandel

(subbing for Dan Weld)

Announcements

P0: You’re good unless you saw an email from us

Now in More 220!

Project 1: “Search” - due Friday 10/14

Should have started by now!

Dan will be back Friday!

Start!

10/5/2016

2

Search thru a

 Set of states

 Operators [and costs]

 Start state

 Goal state [test]

• Path: start  a state satisfying goal test

• [May require shortest path]

• [Sometimes just need state passing test]

• Input:

• Output:

Problem Space / State Space

Tree vs Graph search

 In BFS, for example, we shouldn’t bother

expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

10/5/2016

3

Graph Search

 Very simple fix: never expand a state type twice

Some Hints

 Graph search is almost always better than

tree search

 Implement your closed list as a dict or set!

 Space huge concern!

10/5/2016

4

Search with Heuristics

10

S

G

A* Search

Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)

 g(n) = sum of costs from start to n

 h(n) = estimate of lowest cost path n  goal

h(goal) = 0

10/5/2016

5

A* Search

Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)

 g(n) = sum of costs from start to n

 h(n) = estimate of lowest cost path n  goal

h(goal) = 0

Can view as cross-breed:

g(n) ~ uniform cost search

h(n) ~ greedy search

Best of both worlds…

Admissible Heuristics

13

State (x)

V
a

lu
e

State (x)

Admissible Not Admissible

True (optimal) cost remaining

Heuristic-estimated cost remaining

Slide credit: Travis Mandel

10/5/2016

6

Monotonic/Consistent Heuristics

1414

State (x) State (x)

Monotonic Not Monotonic (but admissible)

True (optimal) cost remaining

h(x) Heuristic-estimated cost remaining

V
a

lu
e

Slide credit: Travis Mandel

Monotonic/Consistent Heuristics

1515

State (x)

V
a

lu
e

State (x)

Monotonic Not Monotonic (but admissible)

True (optimal) cost remaining

h(x) Heuristic-estimated cost remaining

f(x) Heuristic + cost so far
Slide credit: Travis Mandel

10/5/2016

7

16

Optimality of A* (tree search)

17

Optimality Continued

10/5/2016

8

18

A* Example

19

A* Example

10/5/2016

9

20

A* Example

21

A* Example

10/5/2016

10

22

A* Example

23

A* Example

10/5/2016

11

24

European Examplestart

end

1

2

3

4

5

25

A* Summary

 Pros

 Cons

Produces optimal cost solution!

Does so quite quickly (focused)

Maintains priority queue…

Which can get exponentially big 

10/5/2016

12

26

Iterative-Deepening A*
 Like iterative-deepening depth-first, but...

 Depth bound modified to be an f-limit

 Start with f-limit = h(start)

 Prune any node if f(node) > f-limit

 Next f-limit = min-cost of any node pruned

a

b

c

d

e

f

FL=15

FL=21

28

IDA* Analysis
 Complete & Optimal (ala A*)

 Space usage  depth of solution

 Each iteration is DFS - no priority queue!

 # nodes expanded relative to A*

 Depends on # unique values of heuristic function

 In 8 puzzle: few values  close to # A* expands

 In traveling salesman: each f value is unique

 1+2+…+n = O(n2) where n=nodes A* expands

if n is too big for main memory, n2 is too long to wait!

10/5/2016

13

© Daniel S. Weld 29

Forgetfulness

 A* used exponential memory

 How much does IDA* use?

 During a run?

 In between runs?

 SMA*

Heuristics

It’s what makes search actually work

10/5/2016

14

Dominance

If h2(n) ≥ h1(n) for all n (both admissible)

then h2 dominates h1

h2 is better - guaranteed never to expand more nodes.

State (x)

h
(x

)

Admissable Heuristics

 f(x) = g(x) + h(x)

 g: cost so far

 h: underestimate of remaining costs

36
© Daniel S. Weld

Where do heuristics come from?

10/5/2016

15

Relaxed Problems
 Derive admissible heuristic from exact cost

of a solution to a relaxed version of

problem

37
© Daniel S. Weld

out of place = 2, true distance to goal = 3

• Cost of optimal soln to relaxed problem  cost of
optimal soln for real problem

 For blocks world, distance = # move operations

 heuristic = number of misplaced blocks

 What is relaxed problem?

What’s being relaxed?
Heuristic = Euclidean distance

10/5/2016

16

Example: Pancake Problem

Cost: Number of pancakes flipped

Action: Flip over the

top n pancakes

Example: Pancake Problem

10/5/2016

17

Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3

4

3

4

2

3

Pancake Heuristic?

Heuristic: the largest pancake that is still out of place

4

3

0

2

3

3

3

4

4

3

4

4

4

h(x)

10/5/2016

18

Traveling Salesman Problem

43

What can be

Relaxed?

Objective: shortest path visiting every city

Groundedness.

If can fly to previously seen city  minimum spanning tree

Heuristics for eight puzzle

 What can we relax?

44

7 2 3

8 3

5 1 6
1 2 3

7 8

4 5 6

start goal



h1 = number of tiles in wrong place

h2 =  distances of tiles from correct loc

10/5/2016

19

Importance of Heuristics

h1 = number of tiles in wrong place

45

D IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

6 680 20 18

8 6384 39 25

10 47127 93 39

12 364404 227 73

14 3473941 539 113

18 3056 363

24 39135 1641

7 2 3

8 5

4 1 6

Importance of Heuristics

h1 = number of tiles in wrong place

h2 =  distances of tiles from correct loc

46

D IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

6 680 20 18

8 6384 39 25

10 47127 93 39

12 364404 227 73

14 3473941 539 113

18 3056 363

24 39135 1641

7 2 3

8 5

4 1 6

Decrease effective branching factor

10/5/2016

20

Need More Power!

Performance of Manhattan Distance Heuristic

 8 Puzzle < 1 second

 15 Puzzle 1 minute

 24 Puzzle 65000 years

Need even better heuristics!

47
© Daniel S. Weld

Adapted from Richard Korf presentation

Subgoal Interactions

 Manhattan distance assumes

 Each tile can be moved independently of

others

 Underestimates because

 Doesn’t consider interactions between tiles

48
© Daniel S. Weld

Adapted from Richard Korf presentation

1 2 3

7 8

4 6 5

10/5/2016

21

Pattern Databases

 Pick any subset of tiles
 E.g., 3, 7, 11, 12, 13, 14, 15

 (or as drawn)

 Precompute a table

 Optimal cost of solving just these tiles

 For all possible configurations

 57 Million in this case

 Use A* or IDA*

 State = position of just these tiles (& blank)

49
© Daniel S. Weld

Adapted from Richard Korf presentation

[Culberson & Schaeffer 1996]

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

Using a Pattern Database

 As each state is generated

 Use position of chosen tiles as index into DB

 Use lookup value as heuristic, h(n)

 Admissible?

50
© Daniel S. Weld

Adapted from Richard Korf presentation

10/5/2016

22

Combining Multiple Databases

 Can choose another set of tiles

 Precompute multiple tables

 How combine table values?

 E.g. Optimal solutions to Rubik’s cube

 First found w/ IDA* using pattern DB heuristics

 Multiple DBs were used (dif cubie subsets)

 Most problems solved optimally in 1 day

 Compare with 574,000 years for IDDFS
51

© Daniel S. Weld Adapted from Richard Korf presentation

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

Drawbacks of Standard Pattern DBs

 Since we can only take max

 Diminishing returns on additional DBs

 Would like to be able to add values

52
© Daniel S. Weld

Adapted from Richard Korf presentation

10/5/2016

23

Disjoint Pattern DBs

 Partition tiles into disjoint sets

 For each set, precompute table

 E.g. 8 tile DB has 519 million entries

 And 7 tile DB has 58 million

 During search

 Look up heuristic values for each set

 Can add values without overestimating!

 Manhattan distance is a special case of this

idea where each set is a single tile 53

© Daniel S. Weld Adapted from Richard Korf presentation

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

Performance

 15 Puzzle: 2000x speedup vs Manhattan dist

 IDA* with the two DBs shown previously solves 15

Puzzles optimally in 30 milliseconds

 24 Puzzle: 12 million x speedup vs Manhattan

 IDA* can solve random instances in 2 days.

 Requires 4 DBs as shown

 Each DB has 128 million entries

 Without PDBs: 65,000 years

54

© Daniel S. Weld Adapted from Richard Korf presentation

10/5/2016

24

© Daniel S. Weld 55

Alternative Approach…

 Optimality is nice to have, but…

 Sometimes space is too vast! Find

suboptimal solution using local search.

© Daniel S. Weld 57

No

O(b^d)

O(b + N)

Beam Search

 Idea

 Best first but only keep N best items on

priority queue

 Evaluation

 Complete?

 Time Complexity?

 Space Complexity?

10/5/2016

25

© Daniel S. Weld 58

Hill Climbing
Idea

 Always choose best child; no

backtracking

 Beam search with |queue| = 1

Problems?
• Local maxima

• Plateaus

• Diagonal ridges

“Gradient ascent”

