CSE 473: Artificial Intelligence
Autumn 2016

Search: Heuristics and Pattern DBs

Travis Mandel
(subbing for Dan Weld)

With slides from
Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Announcements

PO: You're good unless you saw an email from us

Now in More 220!

Project 1: “Search” - due Friday 10/14
Should have started by now!

Dan will be back Friday!

10/5/2016

Search thru a
Problem Space / State Space

* Input:

= Set of states

» Operators [and costs]
= Start state

» Goal state [test]

* Output:
* Path: start = a state satisfying goal test
» [May require shortest path]
» [Sometimes just need state passing test]

Tree vs Graph search

* |In BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)

d
N
@ h r q
\ @h /™ \f
a r
N ®@/\
p q f q ¢ G
\ PN '
q G a

10/5/2016

Graph Search

= Very simple fix: never expand a state type twice

function GrRAPH-SEARCH(problem. fringe) returns a solution, or failure

closed — an empty set
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do
if fringe is empty then return failure
node — REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return nod:

if STATE[n0de] is not in closed then
add STATE[nodd] to closed <:|
fringe — INSERTA LL(EXPAND(node, problem), fringe)

end

Some Hints

= Graph search is almost always better than
tree search

» Implement your closed list as a dict or set!

= Space huge concern!

10/5/2016

Search with Heuristics

10

A* Search

Hart, Nilsson & Rafael 1968
Best first search with f(n) = g(n) + h(n)
= g(n) = sum of costs from start to n
= h(n) = estimate of lowest cost path n — goal
h(goal) =0

10/5/2016

A* Search

Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)
= g(n) = sum of costs from start to n
» h(n) = estimate of lowest cost path n — goal

h(goal) =0

Can view as cross-breed:
g(n) ~ uniform cost search
h(n) ~ greedy search

Best of both worlds...

Admissible Heuristics

Admissible Not Admissible
[}
=
: ___

State (x) State (x)

= True (optimal) cost remaining
= Heuristic-estimated cost remaining 13

10/5/2016

Monotonic/Consistent Heuristics

Monotonic Not Monotonic (but admissible)

___ ___

State (X) State (X)

Value

== True (optimal) cost remaining
=== h(X) Heuristic-estimated cost remaining 1

Monotonic/Consistent Heuristics

Monotonic Not Monotonic (but admissible)

] [. [
l_I_
1

State (x) State (x)

Value

= True (optimal) cost remaining
=== h(X) Heuristic-estimated cost remaining 15
=== f(x) Heuristic + cost so far

10/5/2016

Optimality of A* (tree search)

Suppose some suboptimal goal G has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G1.

Start

n
) d

f(Gs) = g(G3) since h{(Ga) =0
> ¢(G1) since Gy is suboptimal
> f(n) sinee h is admissible

Since f(G2) > f(n), A* will never select G for expansion

16

Optimality Continued

Lemma: A* expands nodes in order of increasing [value®

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)

Contour i has all nodes with f = f;, where f; < fi1

10/5/2016

A* Example

|
366=0+366

18
*E I
A* Example
Crad
P Sibiu_D Climisoarsd CZerind
393=140+253 447=118+329 449=75+374
19

10/5/2016

A* Example

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

20

A* Example

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

21

10/5/2016

A* Example

447=118+329

646=280+366 671=291+4380

501=338+253 450=450+0 526=366+160 417=317+100 553=300+253

22

449=75+374

A* Example

646=280+366

591=338+253 450=450+0 526=366+160

418=418+0 615=455+160 607=414+193

23

449=75+374

10/5/2016

10

European Example

Sibiu g9 Fagaras

Dobreta [J

Eforie

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

24

366
0
160
242
161
178
151
226
244
241
234
380
98
193
253
320
80
199
374

A* Summary

= Pros

Produces optimal cost solution!

Does so quite quickly (focused)

= Cons

Maintains priority queue...

Which can get exponentially big ®

25

10/5/2016

11

lterative-Deepening A*
r Like iterative-deepening depth-first, but...
r Depth bound modified to be an f-limit

= Start with f-limit = h(start)

» Prune any node if f(node) > f-limit

» Next f-limit = min-cost of any node pruned

26

IDA* Analysis
= Complete & Optimal (ala A*)
= Space usage o« depth of solution
= Each iteration is DFS - no priority queue!

= # nodes expanded relative to A*
= Depends on # unique values of heuristic function
» |n 8 puzzle: few values = close to # A* expands

» |n traveling salesman: each f value is unique
= 1+2+...+n =0O(n?) where n=nodes A* expands
if n is too big for main memory, n? is too long to wait!

28

10/5/2016

12

10/5/2016

Forgetfulness

= A* used exponential memory
= How much does IDA* use?
= During a run?
= In between runs?
= SMA*

© Daniel S. Weld 29

Heuristics

It's what makes search actually work

13

Dominance

If hy(n) 2hy(n)foralln (both admissible)
then h, dominates h;

h, is better - guaranteed never to expand more nodes.

[t

h(x)

State (x)

Admissable Heuristics

" 1(x) = 9(x) + h(x)

= g: cost so far
» h: underestimate of remaining costs

Where do heuristics come from?

36

© Daniel S. Weld

10/5/2016

14

Relaxed Problems

= Derive admissible heuristic from exact cost
of a solution to a relaxed version of
problem
= For blocks world, distance = # move operations
= heuristic = number of misplaced blocks
= What is relaxed problem?

I_. — —

" #out of place = 2, true distance to goal =

* Cost of optimal soln to relaxed problem < cost of

optimal soln for real problem

© Daniel S. Weld s

What's being relaxed?

Heuristic = Euclidean distance

Straight-line distance
0 Buchamst

Arad W8E
Bucharest ¥
Craiova 180
Dobreta 242
Eforie 161
Fagaras 176
Giurgiu 7
Hirsova 151
Iasi 275
Lugoj 24
Mehadia 241
MNeamt 234
Oradea 80
Pitesti 10
Rimnicu Vikkea o3
Sibiu 253
Timisoara a9
Urziceni 50
Vaslui 199
A Giugiu Zerind 174

10/5/2016

15

Example: Pancake Problem

Action: Flip over the
top n pancakes

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n-+3.

10/5/2016

16

Example: Pancake Problem

State space graph with costs as weights

Pancake Heuristic?

Heuristic: the largest pancake that is still out of place

y = — h(x)
T I
4= S = “~,
- 3 — 0 —
o — —
— N /3_ /
! 4 == S~
= L =

10/5/2016

17

Traveling Salesman Problem

Objective: shortest path visiting every city

What can be
Relaxed?

Groundedness.
If can fly to previously seen city = minimum spanning tree

43

Heuristics for eight puzzle

7]2]3 1]2]3
5/1]6 5 [4]56

83. 78.

start goal

= \What can we relax?

h1l = number of tiles in wrong place
h2 = 2 distances of tiles from correct loc

44

10/5/2016

18

Importance of Heuristics ||
h1 = number of tiles in wrong place i |
D IDS A*(h1)
2 10 6
4 112 13
6 680 20
8 6384 39
10 47127 93
12 364404 227
14 3473941 539
18 3056
24 39135
Importance of Heuristics ||
h1 = number of tiles in wrong place i |
h2 = > distances of tiles from correct loc

D IDS A*(hl) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Decrease effective branching factor

46

10/5/2016

19

10/5/2016

Need More Power!

Performance of Manhattan Distance Heuristic

= 8 Puzzle < 1 second
= 15 Puzzle 1 minute
» 24 Puzzle 65000 years

Need even better heuristics!

© Daniel S. Weld 47

Adapted from Richard Korf presentation

Subgoal Interactions

= Manhattan distance assumes

= Each tile can be moved independently of
others

= Underestimates because
= Doesn’t consider interactions between tiles

—_

213
416|5

k] |

© Daniel S. Weld 48

Adapted from Richard Korf presentation

20

10/5/2016

Pattern Databases

[Culberson & Schaeffer 1996]

11234
= Pick any subset of tiles 56 |7 |8
"E.g, 3,7, 11,12, 13, 14, 15 1112
= (or as drawn) .

= Precompute a table

= Optimal cost of solving just these tiles

» For all possible configurations
= 57 Million in this case

= Use A* or IDA*
= State = position of just these tiles (& blank)

© Daniel S. Weld 49

Adapted from Richard Korf presentation

Using a Pattern Database

= As each state is generated

» Use position of chosen tiles as index into DB
» Use lookup value as heuristic, h(n)

= Admissible?

© Daniel S. Weld =0

Adapted from Richard Korf presentation

21

Combining Multiple Databases

= Can choose another set of tiles
» Precompute multiple tables
= How combine table values?

= E.g. Optimal solutions to Rubik’s cube
» First found w/ IDA* using pattern DB heuristics
» Multiple DBs were used (dif cubie subsets)
» Most problems solved optimally in 1 day
» Compare with 574,000 years for IDDFS51

© Daniel S. Weld

Adapted from Richard Korf presentation

Drawbacks of Standard Pattern DBs

= Since we can only take max
= Diminishing returns on additional DBs

= \Would like to be able to add values

© Daniel S. Weld 52

Adapted from Richard Korf presentation

10/5/2016

22

Disjoint Pattern DBS ;137372

56 |7 |8

= Partition tiles into disjoint sets 9|10|11]12
» For each set, precompute table 13]14 15.

= E.g. 8 tile DB has 519 million entries
= And 7 tile DB has 58 million
= During search
» Look up heuristic values for each set
» Can add values without overestimating!

» Manhattan distance is a special case of this
idea where each set is a single tile 53

Adapted from Richard Korf presentation

© Daniel S. Weld

Performance

» 15 Puzzle: 2000x speedup vs Manhattan dist

= |DA* with the two DBs shown previously solves 15
Puzzles optimally in 30 milliseconds

» 24 Puzzle: 12 million x speedup vs Manhattan
= IDA* can solve random instances in 2 days.
» Requires 4 DBs as shown
= Each DB has 128 million entries
= Without PDBs: 65,000 years

54

Adapted from Richard Korf presentation

© Daniel S. Weld

10/5/2016

23

Alternative Approach...

= Optimality is nice to have, but...

= Sometimes space is too vast! Find
suboptimal solution using local search.

© Daniel S. Weld

55

Beam Search

= |dea

» Best first but only keep N best items on
priority queue

= Evaluation
» Complete?

» Time Complexity?
= Space Complexity?

© Daniel S. Weld 57

10/5/2016

24

HI” Cllmblng "Gradient ascent”

=|dea

= Always choose best child; no
backtracking

= Beam search with |queue| =1
"Problems?
* Local maxima

* Plateaus ‘-/l

- Diagonal ridges m

© Daniel S. Weld i 58

10/5/2016

25

