CSE 473: Artificial Intelligence
Autumn 2016

Search: Cost & Heuristics

Dan Weld

With slides from
Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Announcements

Project 0: “Warm-up” — due today

Project 1: “Search” - due Friday 10/14
Start early!

Wed: Guest lecture on heuristics by Travis Mandel

10/3/16

Search thru a
Problem Space / State Space

* Input:
» Set of states
= Operators [and costs]
= Start state
» Goal state [test]

* Output:

 Path: start = a state satisfying goal test
* [May require shortest path]
» [Sometimes just need state passing test]

Graduation?

» Getting a BS in CSE as a search problem?
(don’t think too hard)

= Space of States
= Operators

= |nitial State

= Goal State

10/3/16

DFS vs BFS

Algorithm Complete [Optimal |Time Space
DFS N uni m
#r';‘iteess N o™ O(bm)
BFS Y Y O(b%) O(b9)
1 node
b nodes
d tiers
b2 nodes
b nodes
b™ nodes

V

Cycle checking in DFS costs exponential memory!

Memory is a Big Limitation!!

= Suppose:
-4 GHz CPU
- 32 6B main memory
+ 100 instructions / expansion

- 5 bytes / node

* 40 M expansions / sec
* Memory filled in ... 3 min

10/3/16

lterative Deepening Search

= DFS with limit; incrementally grow limit

= Evaluation

O
A

o O

lterative Deepening Search

= DFS with limit; incrementally grow limit

= Evaluation
aN

ARy

O O

10/3/16

lterative Deepening Search

= DFS with limit; incrementally grow limit
= Evaluation

= Complete?
b e
= Time Complexity? ;\
i
» Space Complexity? / \\
® ® o0 © 0

lterative Deepening Search

= DFS with limit; incrementally grow limit
= Evaluation
= Complete?

* b e
Yes
= Time Complexity? ;\ d

O(bd) @
» Space Complexity? /@\ / \\
o O O
O(bd)

* Assuming branching factor is finite
Important Note: no cycle checking necessary!

10/3/16

Cost of Iterative Deepening

b ratio ID to DFS
2 3
3 2
5 1.5
10 1.2
25 1.08
100 1.02

S peed Assuming 10M nodes/sec & sufficient memory

BFS
Nodes Time

8 Puzzle 105
2x2x2 Rubik’s 1qs
15 Puzzle 1013
3x3x3 Rubik’s 101¢
24 Puzzle 1025

Why the difference?

Rubik has higher branch factor
15 puzzle has greater depth

Iter. Deep.
Nodes Time
.01 sec 10° .01 sec
.2 sec 106 .2 sec
6 days 1mx 10" 20k yrs
68k yrs s8x 1020 574k yrs
12B yrs 1037 1023 yrs

of duplicates

ide adapted from Richard Korf presentation

10/3/16

10/3/16

Search Methods

= Depth first search (DFS) iy s
= Breadth first search (BFS) “erey,
= |terative deepening depth-first search (IDS)

14

Search Methods

Depth first search (DFS)
Breadth first search (BFS)
lterative deepening depth-first search (IDS)

Best first search
Uniform cost search (UCS) /Ye%%
Greedy search Sarch
A
lterative Deepening A* (IDA*)
= Beam search
Hill climbing °

Blind vs Heuristic Search

= Costs on Actions

= Heuristic Guidance

16

Costs on Actions

Objective: Path with smallest overall cost

10/3/16

10/3/16

Costs on Actions

What will BFS return?

... finds the shortest path in terms of number of transitions.
It does not find the least-cost path.

Best-First Search

= Generalization of breadth-first search
» Fringe = Priority queue of nodes to be explored
= Cost function f(n) applied to each node

19

uﬂﬁuﬁ

=»| Priority Queue Refresher

= A priority queue is a data structure in which you can insert and
retrieve (key, value) pairs with the following operations:

pg.push(key, value) |inserts (key, value) into the queue.

pqg.pop() returns the key with the lowest value, and
removes it from the queue.

* You can decrease a key'’s priority by pushing it again
= Unlike a regular queue, insertions aren’t constant time,
usually O(log n)

= We'll need priority queues for cost-sensitive search methods

Best-First Search

= Generalization of breadth-first search
» Fringe = Priority queue of nodes to be explored
= Cost function f(n) applied to each node

Add initial state to priority queue
While queue not empty
Node = head(queue)
If goal?(node) then return node
Add children of node to queue
~

“ex}aanc[ing the node”
21

10/3/16

10

10/3/16

Old Friends

= Breadth First =
= Best First
= with f(n) = depth(n)

= Dijkstra’s Algorithm (Uniform cost) =
= Best First
= with f(n) = the sum of edge costs from start to n

22

Uniform Cost Search

Best first, where
f(n) = “cost from start to n”

aka “Dijkstra’s Algorithm”

11

Uniform Cost Search

Expansion order:

Sp.dbeafleld]

Cost
contours < @6 a @13
(not all shown) N

Uniform Cost Search

Algorithm Complete |Optimal |Time Space
DFS 145 |Yiffinite | N O(b™) O(bm)
BFS Y Y* O(b%) O(b9)
UCS Y* Y O(bC) O(bC*%)

~ g .

7 Q

C*/e tiers <
O

C* = Optimal cost

¢ = Minimum cost of an action

10/3/16

12

Uniform Cost Issues

= Remember: explores c<1
increasing cost contours c< 2
c<3

» The good: UCS is
complete and optimal!

= The bad:

= Explores options in every

“direction”
* No information about goal
location Goal

Uniform Cost: Pac-Man

= Cost of 1 for each action
» Explores all of the states, but one

10/3/16

13

What is a Heuristic?

» An estimate of how close a state is to a goal
= Designed for a particular search problem

» Examples: Manhattan distance: 10+5 = 15
Euclidean distance: 11.2

What is a Heuristic?

* An estimate of how close a state is to a goal
= Designed for a particular search problem

» Actual distance to goal: 2+4+2+1+8=

10/3/16

14

Greedy Search

Best first with f(n) = heuristic estimate of distance to goal

Straight=line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Arad] 02 Eforie 161
Fagaras 178
16 SIM" 99 Fagaras Glurgiu 7
" [Vaslui Hirsova 151
lasi

Lugo) @

Mehadia
Neamt 234
Oradea 380
M Hirsova Pitesti 98
Rimnicu Vileea 193
Sibiu 253
Timisoara 329
s Urziceni 80
Eforie Vaslui 199
Zerind 374

Expand the node that seems closest...
<)
A
start
B d/—.
goal

What can go wrong?

10/3/16

15

Greedy Search

= Common case:

= Best-first takes rou straight
to a (suboptimal) goal

» Worst-case: like a badly-
guided DFS
= Can explore everything

= Can get stuck in loops if no
cycle checking

= Like DFS in completeness
= Complete w/ cycle checking
= [ffinite # states

A* Search

Hart, Nilsson & Rafael 1968
Best first search with f(n) = g(n) + h(n)
» g(n) = sum of costs from start to n
= h(n) = estimate of lowest cost path n — goal
h(goal) = 0

If h(n) is admissible and monotonic
then A* is optimal

Underestimates (<) cost

ofc;‘eachmg goal from f values never decrease

node From node to descendants
(triangle inequality)

10/3/16

16

10/3/16

A* Search

Hart, Nilsson & Rafael 1968
Best first search with f(n) = g(n) + h(n)

= g(n) = sum of costs from start to n
= h(n) = estimate of lowest cost path n — goal
h(goal) =0

Can view as cross-breed:
g(n) ~ uniform cost search
h(n) ~ greedy search

Best of both worlds...

Is Manhattan distance admissible?

= Underestimate?

36

17

Is Manhattan distance monotonic?

= f values increase from node to children
= (triangle inequality)

S

37

Monotonicity

F(a) > F(b)
G(a)+H(a) = G(b)+H(b)

38

10/3/16

18

Euclidean Distance

= Admissible?
= Monotonic?

S

39

10/3/16

19

