
10/3/16

1

CSE 473: Artificial Intelligence
Autumn 2016

Search: Cost & Heuristics

Luke Zettlemoyer
Lecture adapted from Dan Klein’s slides

Multiple slides from Stuart Russell, Andrew Moore

With slides from
Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Dan Weld

Announcements
Project 0: “Warm-up” – due today

Project 1: “Search” - due Friday 10/14
Start early!

Wed: Guest lecture on heuristics by Travis Mandel
Start!

10/3/16

2

3

Search thru a

§ Set of states
§ Operators [and costs]
§ Start state
§ Goal state [test]

• Path: start Þ a state satisfying goal test
• [May require shortest path]
• [Sometimes just need state passing test]

• Input:

• Output:

Problem Space / State Space

4

Graduation?

§ Getting a BS in CSE as a search problem?
(don’t think too hard)

§ Space of States
§ Operators
§ Initial State
§ Goal State

10/3/16

3

DFS vs BFS

§ When is BFS optimal?

Algorithm Complete Optimal Time Space
DFS

BFS

N unless
finite

N O(bm) O(bm)

Y Y O(bd) O(bd)

…
b 1 node

b nodes

b2 nodes

bm nodes

d tiers

bd nodes

Cycle checking in DFS costs exponential memory!

7

Memory is a Big Limitation!!
§ Suppose:

• 4 GHz CPU
• 32 GB main memory
• 100 instructions / expansion
• 5 bytes / node

• 40 M expansions / sec
• Memory filled in … 3 min

10/3/16

4

8

§ DFS with limit; incrementally grow limit
§ Evaluation

Iterative Deepening Search

a

9

§ DFS with limit; incrementally grow limit
§ Evaluation

Iterative Deepening Search

a b

c d

10/3/16

5

10

§ DFS with limit; incrementally grow limit
§ Evaluation

§ Complete?

§ Time Complexity?

§ Space Complexity?

Iterative Deepening Search

a b e

c f d i

g h lkj

11

§ DFS with limit; incrementally grow limit
§ Evaluation

§ Complete?

§ Time Complexity?

§ Space Complexity?

Iterative Deepening Search

a b e

c d

Yes *

O(bd)

O(bd)

d

* Assuming branching factor is finite
Important Note: no cycle checking necessary!

10/3/16

6

12

Cost of Iterative Deepening

b ratio ID to DFS

2 3

3 2

5 1.5

10 1.2

25 1.08

100 1.02

13

of duplicates

Speed

8 Puzzle

2x2x2 Rubik’s
15 Puzzle

3x3x3 Rubik’s

24 Puzzle

105 .01 sec

106 .2 sec

1017 20k yrs

1020 574k yrs

1037 1023 yrs

BFS
Nodes Time

Iter. Deep.
Nodes Time

Assuming 10M nodes/sec & sufficient memory

105 .01 sec

106 .2 sec

1013 6 days

1019 68k yrs

1025 12B yrs

Slide adapted from Richard Korf presentation

Why the difference?

8x

1Mx

Rubik has higher branch factor
15 puzzle has greater depth

10/3/16

7

Search Methods
§ Depth first search (DFS)
§ Breadth first search (BFS)
§ Iterative deepening depth-first search (IDS)

14

Search Methods
§ Depth first search (DFS)
§ Breadth first search (BFS)
§ Iterative deepening depth-first search (IDS)
§ Best first search
§ Uniform cost search (UCS)
§ Greedy search
§ A*
§ Iterative Deepening A* (IDA*)
§ Beam search
§ Hill climbing 15

10/3/16

8

Blind vs Heuristic Search

§ Costs on Actions

§ Heuristic Guidance

16

Costs on Actions

Objective: Path with smallest overall cost

START

GOAL

d

b

p q

c

e

h

a

f

r

2

9 2

81

8

2

3

1
4

4

15
1

3 2
2

10/3/16

9

Costs on Actions

What will BFS return?

START

GOAL

d

b

p q

c

e

h

a

f

r

2

9 2

81

8

2

3

1
4

4

15
1

3 2
2

… finds the shortest path in terms of number of transitions.
It does not find the least-cost path.

19

Best-First Search
§ Generalization of breadth-first search
§ Fringe = Priority queue of nodes to be explored
§ Cost function f(n) applied to each node

10/3/16

10

Priority Queue Refresher

pq.push(key, value) inserts (key, value) into the queue.

pq.pop() returns the key with the lowest value, and
removes it from the queue.

§ You can decrease a key’s priority by pushing it again

§ Unlike a regular queue, insertions aren’t constant time,

usually O(log n)

§ We’ll need priority queues for cost-sensitive search methods

§ A priority queue is a data structure in which you can insert and
retrieve (key, value) pairs with the following operations:

21

Best-First Search
§ Generalization of breadth-first search
§ Fringe = Priority queue of nodes to be explored
§ Cost function f(n) applied to each node

Add initial state to priority queue
While queue not empty

Node = head(queue)
If goal?(node) then return node
Add children of node to queue

“expanding the node”

10/3/16

11

22

Old Friends
§ Breadth First =

§ Best First
§ with f(n) = depth(n)

§ Dijkstra’s Algorithm (Uniform cost) =
§ Best First
§ with f(n) = the sum of edge costs from start to n

Uniform Cost Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2

Best first, where
f(n) = “cost from start to n”

aka “Dijkstra’s Algorithm”

10/3/16

12

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Expansion order:
S, p, d, b, e, a, r, f, e, G S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164 11
5

713

8

1011

17 11

0

6

3 9

1

1

2

8

8 1

15

1

2

Cost
contours

(not all shown)

2

Uniform Cost Search
Algorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS

UCS

Y if finite N O(bm) O(bm)

Y Y* O(bd) O(bd)

Y* Y O(bC*/e) O(bC*/e)

…
b

C*/e tiers

C* = Optimal cost

e = Minimum cost of an action

10/3/16

13

Uniform Cost Issues
§ Remember: explores

increasing cost contours

§ The good: UCS is
complete and optimal!

§ The bad:
§ Explores options in every
“direction”

§ No information about goal
location Start Goal

…

c £ 3

c £ 2
c £ 1

Uniform Cost: Pac-Man

§ Cost of 1 for each action
§ Explores all of the states, but one

10/3/16

14

What is a Heuristic?
§ An estimate of how close a state is to a goal
§ Designed for a particular search problem

10

5
11.2

§ Examples: Manhattan distance: 10+5 = 15
Euclidean distance: 11.2

What is a Heuristic?
§ An estimate of how close a state is to a goal
§ Designed for a particular search problem

10

§ Actual distance to goal: 2+4+2+1+8=

10

5

10/3/16

15

Greedy Search
Best first with f(n) = heuristic estimate of distance to goal

Greedy Search

Expand the node that seems closest…

What can go wrong?

B

A

start

goal

10/3/16

16

Greedy Search
§ Common case:

§ Best-first takes you straight
to a (suboptimal) goal

§ Worst-case: like a badly-
guided DFS
§ Can explore everything
§ Can get stuck in loops if no

cycle checking

§ Like DFS in completeness
§ Complete w/ cycle checking
§ If finite # states

…
b

…
b

34

A* Search
Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)
§ g(n) = sum of costs from start to n
§ h(n) = estimate of lowest cost path n ® goal

h(goal) = 0

If h(n) is admissible and monotonic
then A* is optimal

}

{

10/3/16

17

35

A* Search
Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)
§ g(n) = sum of costs from start to n
§ h(n) = estimate of lowest cost path n ® goal

h(goal) = 0

Can view as cross-breed:
g(n) ~ uniform cost search
h(n) ~ greedy search

Best of both worlds…

Is Manhattan distance admissible?
§ Underestimate?

36

S

G

10/3/16

18

Is Manhattan distance monotonic?
§ f values increase from node to children
§ (triangle inequality)

37

S

G

Monotonicity

38

a

b

c

F(a) ≥ F(b)
G(a)+H(a) ≥ G(b)+H(b)

10/3/16

19

Euclidean Distance
§ Admissible?
§ Monotonic?

39

S

G

