CSE 473: Artificial Intelligence
Autumn2016

Problem Spaces & Search

Dan Weld

With slides from
Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Logistics

= Read Ch 3
= Do PSO by Monday (should be easy)
» Start PS1 (harder!)

9/30/16

Outline

= Search Problems

= Uninformed Search Methods
= Depth-First Search
= Breadth-First Search
= Uniform-Cost Search

= Heuristic Search Methods
= Best First / Greedy Search

Agent vs. Environment

An agent is an entity that (Agent h
perceives and acts. Sensors

Percepts
A rational agent selects)
actions that maximize its 2 3
utility function. . §

=]

Characteristics of the Actuators
percepts, environment, Actions
and action space dictate & Y, —

techniques for selecting
rational actions.

9/30/16

Goal Based Agents

Plan ahead
Ask “what if”

Decisions based on
(hypothesized)
consequences of actions

Must have a model of how
the world evolves in
response to actions

Act on how the world
WOULD BE

Types of Environments

Fully observable vs. partially observable
Single agent vs. multiagent
Deterministic vs. stochastic

Episodic vs. sequential

Discrete vs. continuous

9/30/16

Search thru a
Problem Space (aka State Space)

* Input: Functions: States > States
= Set of states Aka “Successor Function”
= Operators S

= Start state
» Goal state [or test]

* Output:

 Path: start = a state satisfying goal test
[May require shortest path]
[Sometimes just need a state that passes test]

Example: Simplified Pac-Man

» |nput:
= A state space

= Successor function N 1.0

\
» A start state ‘1.0
= A goal test
= Qutput:

9/30/16

Ex: Route Planning: Arad - Bucharest

* |nput:
= Set of states

Different operators
may be applicable in

= Operators [and costs] different states

= Start state

» Goal state (test)

= Qutput:

Ex: Blocks World

* |nput:

= Set of states
Partially specified plans

= Operators [and costs]

Plan modification operators

= Start state

The null plan (no actions)

» Goal state (test)
A plan which provably achieves

The desired world configuration

= Qutput:

9/30/16

Plan Space

= Need less abstract / better motivated
example

Drive LINK
Uber

A-SEATAC | | At-SEATAC | | At-SEATAC

16

Plan Space

Visit FEZ
Camel Ride
Constrain

Action Action Ordering

Visit FEZ Camel Ride &

17

9/30/16

Multiple Problem

Spaces
Real World

States of the world (e.g. block configurations)

Actions (take one world-state to another)

Robot's Head

* Problem Space 1
+ PS states =

* Problem Space 2
+ PS states =
* partially spec. plan

- models of world states

* Operators =
+ models of actions

* Operators =
+ plan modificat'n ops

2
Jyu

Il
|
—
by
1
+
=
|
5
o
2,
£
3

* |nput:
= Set of states

= Operators [and costs]
= Start state

= Goal state (test)

= Qutput:

L iimewncss Algebraic Simplification

9/30/16

State Space Graphs

= State space graph:
= Each node is a state
= The operators are
represented by arcs
= Edges may be labeled
with costs

» We can rarely build this
graph in memory (so we

don’t) Ridiculously tiny search graph
for a tiny search problem

State Space Sizes?

= Search Problem:
Eat all of the food

= Pacman positions:
10x12=120
= Pacman facing:
up, down, left, right
= Food configurations: 230
= Ghost1 positions: 12

= Ghost 2 positions: 11

120x4x230x12x11=6.8x 10"

9/30/16

Search Methods

Blind Search

Depth first search

Breadsth first search
Iterative deepening search
Uniform cost search

Local Search
Informed Search
Constraint Satisfaction
Adversary Search

Search Trees

“N”, 1.0 “‘E”, 1.0
/ \

I I

= A search tree:
= Start state at the root node
Children correspond to successors
Nodes contain states, correspond to PLANS to those states
Edges are labeled with actions and costs
For most problems, we can never actually build the whole tree

9/30/16

Example: Tree Search

State graph:

What is the search tree?

State Graphs vs. Search Trees

Each NODE in in the
search tree denotes an
entire PATH in the
problem graph.

S
e
d e p
P PN 1
We construct both b c e h r q
on demand — and | | N\ |
we construct as a a h r p q f
little as possible. "\ | | N
p q f q c G
I N ;
c
q | G
a

9/30/16

10

States vs. Nodes

Vertices in state space graphs are problem states
= Represent an abstracted state of the world
= Have successors, can be goal / non-goal, have multiple predecessors
Vertices in search trees (“Nodes”) are plans
= Contain a problem state and one parent, a path length, a depth & a cost
= Represent a plan (sequence of actions) which results in the node’s state
= The same problem state may be achieved by multiple search tree nodes

Search Tree Nodes
Problem States

Parent
P, Depth 5
Action
R — Node Depth 6
Building Search Trees
Sibiu Cimisoara) CZerind >

Chrad > Clagarasd COradead (o wsd

= Search:
= Expand out possible nodes (plans) in the tree
= Maintain a fringe of unexpanded nodes
» Try to expand as few nodes as possible

9/30/16

11

General Tree Search

function T'REE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

™~

Important ideas:
n Fringe (Ieaves of tree) Detailed pseudocode is
. . in the book!
» Expansion (adding successors of a leaf) e oo
= Exploration strategy

which fringe node to expand next?

Review: Depth First Search

Strategy: expand
deepest node first

Implementation:
Fringe is a stack - LIFO

9/30/16

12

Review: Depth First Search

Expansion ordering:
(d,ba.caehpq,qrfcaG)

Review: Breadth First Search

Strategy: expand
shallowest node first

Implementation:
Fringe is a queue - FIFO

9/30/16

13

Review: Breadth First Search

Expansion order:

(S,d,e,p,b,c,eh,r,q,aa
h,rp,q,fp.q.fq,cG)
f
Search
Tiers < @P | 0 0
h r p f
= 2\ | | /\
S p q f q c G
[PN !
q c G a
]

Search Algorithm Properties

= Complete? Guaranteed to find a solution if one exists?
= Optimal? Guaranteed to find the least cost path?

= Time complexity?

= Space complexity?

Variables:

Number of states in the problem

The maximum branching factor B
(the maximum number of successors for a state)

C* Cost of least cost solution

d Depth of the shallowest solution

Max depth of the search tree

9/30/16

14

DFS

Algorithm Complete |Optimal |Time Space
DFS |QepmFst | No No Infinite Infinite

» |nfinite paths make DFS incomplete... e

= How can we fix this?

» Check new nodes against path from S
» |nfinite search spaces still a problem

\
O

DFS

(1 node
b nodes
b2 nodes
m tiers <
\ S b™ nodes
Algorithm Complete |Optimal |Time Space
DFS |8 oahg | Y if finite N o) O(bm)

* Or graph search — next lecture.

9/30/16

15

BFS

Algorithm Complete [Optimal |Time Space
/ Path .
DFS | Ghecking N unless | N o™ O(bm)
BFS Y Y O(b%) O(b9)
1 node
b nodes
d tiers
b2 nodes
bd nodes
b™ nodes
A4

Memory a Limitation?

= Suppose:
-4 GHz CPU
- 32 6B main memory
+ 100 instructions / expansion

- 5 bytes / node

* 40 M expansions / sec
* Memory filled in ... 3 min

9/30/16

16

