CSE 473: Artificial Intelligence

Bayesian Networks - Learning

Dieter Fox

Slides adapted from Dan Weld, Jack Breese, Dan Klein, Daphne Koller, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Learning Topics

- Learning Parameters for a Bayesian Network
 - Fully observable
 - Maximum Likelihood (ML)
 - Maximum A Posteriori (MAP)
 - Bayesian
 - Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks

© Daniel S. Wel

Parameter Estimation and Bayesian **Networks** Earthquake R Т Т Т F Т Т Alarm F F Т Т Т Т F F Т Т Nbr1Call Nbr2Calls F F F F F Т We have: - Bayes Net structure and observations - We need: Bayes Net parameters

What if we **don't** know structure?

Learning The Structure of Bayesian Networks

- Search through the space...
- of possible network structures!
- (for now, assume we observe all variables)
- For each structure, learn parameters
- Pick the one that fits observed data best
 - Caveat won't we end up fully connected????

When scoring, add a penalty model complexity

Learning The Structure of Bayesian Networks

- Search through the space
- For each structure, learn parameters
- Pick the one that fits observed data best
 - Penalize complex models
- Problem?

Exponential number of networks!
And we need to learn parameters for each!
Exhaustive search out of the question!

Structure Learning as Search

- Local Search
- 1. Start with some network structure
- 2. Try to make a change (add or delete or reverse edge)
- 3. See if the new network is any better
- What should the initial state be?
 - Uniform prior over random networks?
 - Based on prior knowledge?
 - Empty network?
- How do we evaluate networks?

16

Scoring a Bayes Net Structure

- Bayesian Information Criterion (BIC)
 - P(D | BN) penalty
 - Penalty = ½ (# parameters) Log (# data points)

18

Expectation Maximization and Gaussian Mixtures

CSE 473

Feedback in Learning

- Supervised learning: correct answers for each example
- Unsupervised learning: correct answers not given
- Reinforcement learning: occasional rewards

Fitting a Gaussian PDF to Data

- Suppose $y = y_1, ..., y_n, ..., y_N$ is a set of N data values
- Given a Gaussian PDF p with mean μ and std dev σ, define:

$$p(y | \mu, \sigma) = \prod_{n=1}^{N} p(y_n | \mu, \sigma) = \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{1}{2} \frac{(y_n - \mu)^2}{\sigma^2}}$$

How do we choose μ and σ to maximise this probability? Fisher, 1922

Maximum Likelihood Estimation

- Define the best fitting Gaussian to be the one such that $p(y|\mu,\sigma)$ is maximized.
- Terminology:
 - p(y| μ,σ), thought of as a function of y is the probability (density) of y
 - $p(y|\mu,\sigma)$, thought of as a function of μ , σ is the likelihood of μ , σ
- Maximizing p(y| μ,σ) with respect to μ,σ is called Maximum Likelihood (ML) estimation of μ, σ

ML estimation of μ , σ

- Intuitively:
 - The maximum likelihood estimate of μ should be the average value of y₁,...,y_N, (the <u>sample mean</u>)
 - The maximum likelihood estimate of σ should be the variance of $y_1,...,y_N$ (the <u>sample variance</u>)
- This turns out to be true:
 p(y| μ, σ) is maximized by setting:

$$\mu = \frac{1}{N} \sum_{n=1}^{N} y_n, \qquad \sigma = \frac{1}{N} \sum_{n=1}^{N} (y_n - \mu)^2$$

Mixtures

If our data is not labeled, we can hypothesize that:

- 1. There are exactly m classes in the data: $y \in \{1, 2, L, m\}$
- 2. Each class y occurs with a specific frequency: P(y)
- 3. Examples of class y are governed by a specific distribution: $p(\mathbf{x}|y)$

According to our hypothesis, each example $\mathbf{x}^{(i)}$ must have been generated from a specific "mixture" distribution:

$$p(\mathbf{x}) = \sum_{j=1}^{m} P(y=j) p(\mathbf{x}|y=j)$$

We might hypothesize that the distributions are Gaussian:

Parameters of the distributions
$$\theta = \left\{P(y=1), \mu_1, \Sigma_1, \cdots, P(y=m), \mu_m, \Sigma_m\right\}$$

$$p\left(\mathbf{x}|\theta\right) = \sum_{j=1}^m P(y=j) N\left(\mathbf{x}|\mu_j, \Sigma_j\right)$$

Mixing proportions Normal distribution

Graphical Representation of Gaussian Mixtures

$$p(x) = \sum_{i=1}^{3} p(y=i) p(x | y=i, \mu_i, \sigma_i)$$

Learning of mixture models

Learning Mixtures from Data

Consider fixed K = 2

e.g., unknown parameters $Q = \{m_1, s_1, m_2, s_2, a_1\}$

Given data D = $\{x_1, \dots, x_N\}$, we want to find the parameters Q that "best fit" the data

1977: The EM Algorithm

- Dempster, Laird, and Rubin
 - General framework for likelihood-based parameter estimation with missing data
 - start with initial guesses of parameters
 - E-step: estimate memberships given params
 - M-step: estimate params given memberships
 - Repeat until convergence
 - Converges to a local maximum of likelihood
 - E-step and M-step are often computationally simple
 - Can incorporate priors over parameters

EM for Mixture of Gaussians

E-step: Compute probability that point x_j was generated by component i:

$$p_{ij} = \alpha P(x_j \mid C = i) P(C = i)$$
$$p_i = \sum_i p_{ij}$$

M-step: Compute new mean, covariance, and component weights:

$$\begin{split} &\mu_i \leftarrow \sum_j p_{ij} x_j/p_i \\ &\sigma^2 \leftarrow \sum_j p_{ij} (x_j - \mu_i)^2/p_i \\ &w_i \leftarrow p_i \end{split}$$
 © D. Weld and D. Fox

Chicken & Egg Problem

- If we knew that a training instance (patient) had the disease, then it'd be easy to learn P(symptom | disease)
- If we knew params, e.g. P(symptom | disease) then it'd be easy to estimate if the patient had the disease

 2 (Smoking) 2 (Diet) 2 (Eurotie)

Daniel S. Wels

Expectation Maximization (EM) (high-level version)

- Pretend we **do** know the parameters
 - Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable
- [M step] Treating each instance as fractionally having both values compute the new parameter values
- Iterate until convergence!

© Daniel S. Weld

52