CSE 473: Artificial Intelligence

Bayesian Networks - Learning

Dieter Fox

Slides adapted from Dan Weld, Jack Breese, Dan Klein,
Daphne Koller, Stuart Russell, Andrew Moore & Luke
Zettlemoyer
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Learning Topics

= Learning Parameters for a Bayesian Network
= Fully observable
= Maximum Likelihood (ML)
= Maximum A Posteriori (MAP)
= Bayesian
= Hidden variables (EM algorithm)
= Learning Structure of Bayesian Networks
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We have:
- Bayes Net structure and observations

- We need: Bayes Net parameters
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P(A|E,B) =?
P(A|E,~B) = ?
P(A|-E,B) = ?
P(A|~E,-B) =?




Parameter Estimation and Bayesian
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Now compute
either MAP or
Bayesian estimate
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P(B|data) = Beta(1,4) “+ data” = (3,7) ﬂ

Prior P(B)= 1/(1+4) = 20% with equivalent sample size 5
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What if we don’t know
structure?

Learning The Structure
of Bayesian Networks

= Search through the space...
= of possible network structures!
= (for now, assume we observe all variables)
= For each structure, learn parameters
= Pick the one that fits observed data best
= Caveat — won’t we end up fully connected????

When scoring, add a penalty X
model complexity

Learning The Structure
of Bayesian Networks

Search through the space

For each structure, learn parameters
Pick the one that fits observed data best
= Penalize complex models

Problem?
Exponential number of networks!
And we need to learn parameters for each!
Exhaustive search out of the question!

Structure Learning as Search

= | ocal Search
1. Start with some network structure

2. Try to make a change
(add or delete or reverse edge)

3. See if the new network is any better

= What should the initial state be?
= Uniform prior over random networks?
= Based on prior knowledge?
= Empty network?

= How do we evaluate networks?

Scoring a Bayes Net Structure

= Bayesian Information Criterion (BIC)
= P(D | BN) — penalty
= Penalty = 2 (# parameters) Log (# data points)
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Feedback in Learning

Expectation Maximization and . Supﬁrvised Ilearning: correct answers for
. . each example
Gaussian Mixtures P

= Unsupervised learning: correct answers

CSE 473 not given

= Reinforcement learning: occasional
rewards

The problem of finding labels for unlabeled data

In nature, items often do not come with labels. How can we learn labels without a RaW PrOXI m Ity Sensor Data

teacher? Measured distances for expected distance of 300 cm.

Unlabeled data Labeled data
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From Shadmehr & Diedrichsen

ANEMIA PATIENTS AND CONTROLS
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Fitting a Gaussian PDF to Data

= Suppose y =y, ....Yp .Yy IS asetof N
data values

= Given a Gaussian PDF p with mean p
and std dev o, define:

N N 1
,O- = ; ’O' = —_—
plylu.0) [10, 2 ) 5e

10—’
2 o

= How do we choose p and o to maximise
this probability?

5/28/15

Fisher, 1922

Maximum Likelihood Estimation

= Define the best fitting Gaussian to be the
one such that p(y|p,0) is maximized.
= Terminology:
= p(y| 4,0), thought of as a function of y is the
probability (density) of y
= p(y| W,0), thought of as a function of y, o is the
likelihood of y, o
= Maximizing p(y| y,0) with respect to y,0 is
called Maximum Likelihood (ML) estimation
ofy, o

ML estimation of y,o

= |ntuitively:
= The maximum likelihood estimate of u should be
the average value of y,,...,y,, (the sample mean)
= The maximum likelihood estimate of o should be the
variance of y,,...,yy (the sample variance)
= This turns out to be true:
p(y| 4, 0) is maximized by setting:

1 1
,U=NZ)’M o=—Y(y,-u)
n=1

Component 1

Component 2

Mixture Model

Component 1 Component 2

Mixture Model

Component Models

Mixture Model




Mixtures
If our data is not labeled, we can hypothesize that:
1. There are exactly m classes in the data: ye{l,2,L ,m}
2. Each class y occurs with a specific frequency: P(,\’)
3. Examples of class y are governed by a specific distribution: p(x‘y)

According to our hypothesis, each example x() must have been generated from
a specific “mixture” distribution:

p(X):gP(y:.f)p(X\y:j)
We might hypothesize that the distributions are Gaussian:
Parameters of the distributions  0={P(y=1),,.%,.++.P(y=m).u,.%, }
p(x\e):};;(y:f)@,-z,)

Mixing proportions  Normal distribution
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Graphical Representation of
Gaussian Mixtures

()
Hidden variable P(y)

px|y) plx|y=14,0) p(x|y=3,4,0)

Measured variable p(x|y=2,1,,0,)

)= p(y=i)p(x|y=i,u,0,)

i=1

Learning of mixture models

Learning Mixtures from Data

Consider fixed K = 2
e.g., unknown parameters Q = {m,, s, , my, s, , a;}

Given data D = {x,,....... Xy}, We want to find the
parameters Q that “best fit” the data

1977: The EM Algorithm

= Dempster, Laird, and Rubin
= General framework for likelihood-based parameter
estimation with missing data
= start with initial guesses of parameters
= E-step: estimate memberships given params
= M-step: estimate params given memberships
= Repeat until convergence
= Converges to a local maximum of likelihood
= E-step and M-step are often computationally simple
= Can incorporate priors over parameters

EM for Mixture of Gaussians

= E-step: Compute probability that point x;
was generated by component i:
p, =0 P(x,1IC=i)P(C=i)

pi= 217,‘,
J
= M-step: Compute new mean, covariance,
and component weights:

M= DD, I,
J

ol Y p,(x, 1) p,
J

w, < p, ©D. Weld and D, Fox
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ANEMIA PATIENTS AND CONTROLS EM ITERATION 1
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EM ITERATION 10 EM ITERATION 15
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EM ITERATION 25
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ANEMIA DATA WITH LABELS

Control Group

Anemia Group

Red Blood Cell Hemoglobin Concentration

3.5 3.6 3.7 3.8
Red Blood Cell Volume

LOG-LIKELIHOOD AS A FUNCTION OF EM ITERATIONS
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Mixture Density
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How can we determine the model parameters?

Raw Sensor Data

Measured distances for expected distance of 300 cm.

Approximation Results

300cm 400cm




= But we can’ t observe the disease variable
= Can’ t we learn without it?
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We —could-

= But we’ d get a fully-connected network

With 708 parameters (vs. 78)
Much harder to learn!

© Dani

Chicken & Egg Problem

If we knew that a training instance (patient) had
the disease, then it'd be easy to learn
P(symptom | disease)

If we knew params, e.g. P(symptom | disease)
then it'd be easy to estimate if the patient had
the disease i i i

Expectation Maximization (EM)
(high-level version)

= Pretend we do know the parameters
= |nitialize randomly

= [E step] Compute probability of instance
having each possible value of the hidden
variable

= [M step] Treating each instance as
fractionally having both values compute
the new parameter values

= |terate until convergence!
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