CSE 473: Artificial Intelligence Bayes’ Nets

Bayes’ Nets: Inference o Representation
JConditionaI Independences

= Probabilistic Inference

1 = Enumeration (exact, exponential complexity)

= Variable elimination (exact, worst-case
exponential complexity, often better)

= Probabilistic inference is NP-complete

= Sampling (approximate)

Dieter Fox (presented by Peter Henry) = Learning Bayes’ Nets from Data

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai berkeley.edu.]

Inference =

= Inference: calculating some = Examples:
useful quantity from a joint

probability distribution * Posterior probability
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Inference by Enumeration Inference by Enumeration in Bayes’ Net
* Works fine with . L . . . .

= General case: = We want: multiple query = Given unlimited time, inference in BNs is easy

* Evidencevariables:  E1.-.Ep =e1...ex | v owo o ox variables, too

* Query* variable: Q Al variabl P(Qle1...ep) = Reminder of inference by enumeration by example:

* Hidden variables: 71y ... 11, vriables '
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= Stepl: Select the = Step 2: Sum outh to get joint = Step 3: Normalize
entries consistent of Query and evidence _ z P(B, e,a,+j,+m)

with the evidence
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Inference by Enumeration?

Inference by Enumeration vs. Variable Elimination
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P(Antilock|observed variables)

= Why is inference by enumeration so slow?

* You join up the whole joint distribution before
you sum out the hidden variables
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= |dea: interleave joining and marginalizing!
* Called “Variable Elimination”

= Still NP-hard, but usually much faster than
inference by enumeration
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= First we’ll need some new notation: factors

Factor Zoo

Factor Zoo |

P(T,W)
Joint distribution: P(X,Y) T w P
* Entries P(x,y) forall x, y hot sun | 0.4
® Sumstol hot | rain |01

cold sun | 0.2

cold rain | 0.3

Selected joint: P(x,Y)
= Aslice of the joint distribution P(cold, W)
= Entries P(x,y) for fixed x, all y T w P

= Sums to P(x) cold | sun |02

cold rain | 0.3

Number of capitals =
dimensionality of the table

Factor Zoo Il

Factor Zoo Il

Single conditional: P(Y | x)
= Entries Py | x) for fixed x, all y

P(W|cold)

= Sumstol T w P
cold | sun |04
cold | rain | 06
P(W|T)
Family of conditionals: T W P
P(X |Y) hot | sun |08

= Multiple conditionals

- } P(W|hot)

= Entries P(x | y) forallx,y

0.

= Sumsto |Y|

.4
06 \” P(Wlcold)

= Specified family: P(y | X)
= Entries P(y | x) for fixed y,
but for all x
* Sumsto ... who knows!

P(rain|T)
T w e
hot | rain | 02|} P(rain|hot)
cold | rain_| 06 [} P(rain|cold)




Factor Zoo Summary Example: Traffic Domain
= Ingeneral, when we write P(Y, ... Yy | X; ... Xy) = Random Variables P(R)
= Itisa “factor,” a multi-dimensional array = R: Raining e
* it values are Ply; . yy | % - ) = T: Traffic P(TIR)
= Anyassigned (=lower-case) X or Y is a dimension missing (selected) from the array = L: Late for class! o :: f: gi
o [+t o1
P(L) —9 o o [t loso
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Inference by Enumeration: Procedural Outline Operation 1: Join Factors

= Track objects called factors = First basic operation: joining factors

= Combining factors:
= Just like a database join 3@
= Get all factors over the joining variable

= |nitial factors are local CPTs (one per node)
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P(R) P(TIR)  PIT) =
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- o1 EN R involved
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= Example: Joinon R

® P(R) x P(T|IR) =—=> P(RT)

= Any known values are selected
= E.g.if we know L = 42, the initial factors are
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= Procedure: Join all factors, then eliminate all hidden variables

= Computation for each entry: pointwise products V7, L1 D(r,t) = P(r) - P(l|r)

Example: Multiple Joins Example: Multiple Joins f,.’“i
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Operation 2: Eliminate Multiple Elimination
= Second basic operation: marginalization @ @ @
= Take a factor and sum out a variable P(R,T,L) B R Rt Sum
= Shrinks a factor to a smaller one outT P(L)
1
= A projection operation
== Cilosss)
= Example:
P(R,T)
wlwoos] SUM R Py
[« [t]002] =—=>
-r |+t [0.09
| -t]os1
Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration) Marginalizing Early (= Variable Elimination)
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Traffic Domain Marginalizing Early! (aka VE)
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Evidence

Evidence Il

= |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)

[wToi] [wlafes] [wlwles]

Crtos] [lefer] [wliTer]
Taor T for
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= computing ’(L| + 7)the initial factors become:
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= We eliminate all vars other than query + evidence

= Result will be a selected joint of query and evidence
= E.g for P(L | +r), we would end up with:

P(+r,L) Normalize P(L|+ 1)

= To get our answer, just normalize this!

= That’sit!

General Variable Elimination

Example

Query: P(Q|Ey =e1,... B = ¢g)

Start with initial factors:
= Local CPTs (but instantiated by evidence)
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P(B|j,m) < P(B,j,m)

P(B) P(E)  P(AB,E)  P(j|l4) P(m\A)‘

Choose A
= While there are still hidden variables P(A‘37 E)
(not Q or evidence): P . - . .
* Pick a hidden variable H P(@j1A) |z:> P(j,m, A|B, E) |z:> P(j,m|B, E)
= Join all factors mentioning H P("l‘A)
= Eliminate (sum out) H
Join all ining fact d i 1 ‘ P(B) P(E) P(j,m|B, E) ‘
oin all remaining ractors and normalize i: ._u - X —
Z
Example Same Example in Equations

[Py P PGmIBE) | Oy
Choose E

(«)
P(E) |::> P(,m,E|B) [Z ) Py,mB) 0 O
P(j,m|B,E) ! ’
‘ P(B) P(j,m|B) ‘

Finish with B

P(I;,(r}i\)B) |E:> P(j,m,B) P(B\j,m)
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marginal can be obtained from joint by summing ou

P(B|j,m) < P(B,j,m)

‘ P(B) P(E)  P(AB,E)  P(lA)  P(m|A) ‘

P(Blj,m) x P(B,j,m)
= Y P(B.jm.e.a)

= Y P(B)P(e)P(a] B, ) P(jla) P(m]a)

ca

use Bayes’ net joint distribution expression
= Y P(B)P(e) Y PalB.e)P(jla) P(m|a) use x*(y+z) = xy + xz

= i:P(B)P(E)f;’(B-F.j.m) joining on a, and then summing out gives f;
PR, PO A1(B e om)
= P(BY5(B.jm)

use x*(y+2) =xy +xz
joining on e, and then summing out gives f,

All we are doing is exploiting uwy + uwz + uxy + Uxz + Wy + VW2 + vy +vxz = (u+v)(w+x)(y+2) to improve computational efficiency!




Another Variable Elimination Example

Variable Elimination Ordering

Query: P(X3[¥1 =, Yz =2, Y = 13) @

Start by inserting evidenee gives the Tollowing initial factors:

PIZ)P(X71Z)p( X2 Z)pl X 3| Z)p(an | X2 )pluz] Xz )plys | Xs)

Eliminate Xy, this introdu
left. with:

- and ©» ® ©

the factor fi(Z.u;) = ¥, plx1|Z),

plZ)f, 2| Z)p( Xa|

| XalpluslXs)

Eliminate X, this introd alza), and

lefi. with:

e factor f,

PEZ) [i(Z.m) S

Computational complexity critically
2 1 )p( X2 depends on the largest factor being
generated in this process. Size of factor
= number of entries in table. In
example above (assuming binary) all
factors generated are of size 2 - as
they all only have one variable (Z, Z,
and X, respectively).

Z, this introduees the factor

= Forthe query P(X, |ys,...y,) work through the following two different orderings
as done in previous slide: Z, X,, .., X,.; and X,, .., X,.,, Z. What is the size of the
maximum factor generated for each of the orderings?

= Answer: 2™ versus 22 (assuming binary)

= Ingeneral: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

Worst Case Complexity?

= The computational and space complexity of variable elimination is
determined by the largest factor

= The elimination ordering can greatly affect the size of the largest factor.
= E.g., previous slide’s example 2" vs. 2

= Does there always exist an ordering that only results in small factors?
= No!

= CSP:

(2, Vg V—es)

AV gV 2 VA2V Vi) A VgV i A (s Vg Vit )

R 9 0 9 9 @ Q.
e' e Jo)] e‘“\,e

A=y VgV -2 ) A

X;=01=P(X;=1)=05
Yi=XivXev-Xs

b= XV XV Xy
S=V AV

Yeia =¥ ¥

= If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

= Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

Bayes’ Nets

= A polytree is a directed graph with no undirected cycles

= For poly-trees you can always find an ordering that is efficient
= Tryit!

= Cut-set conditioning for Bayes’ net inference

= Choose set of variables such that if removed only a polytree remains
= Exercise: Think about how the specifics would work out!

& Representation
« Conditional Independences

= Probabilistic Inference

o Enumeration (exact, exponential
complexity)

o Variable elimination (exact, worst-case
exponential complexity, often better)

o Inference is NP-complete

= Sampling (approximate)

= Learning Bayes’ Nets from Data




