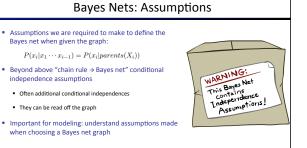


Conditional Independence * X and Y are independent if $\forall x,y \ P(x,y) = P(x)P(y) --- \rightarrow X \perp \!\!\! \perp Y$ * X and Y are conditionally independent given Z $\forall x,y,z \ P(x,y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \!\!\! \perp Y|Z$ * (Conditional) independence is a property of a distribution * Example: $Alarm \perp \!\!\! \perp Fire | Smoke$

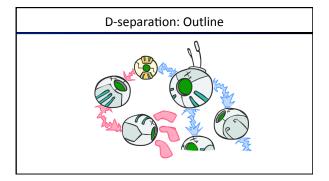


Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 Answer: no. Example: low pressure causes rain, which causes traffic.
 X can influence Z, Z can influence X (via Y)

 - Addendum: they could be independent: how?

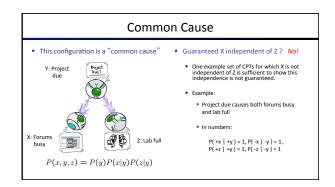


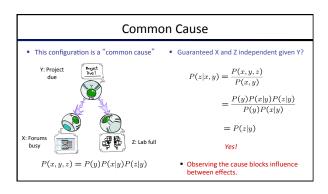
D-separation: Outline

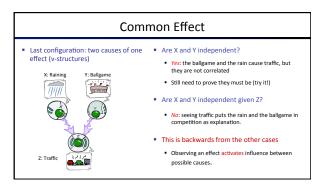
- Study independence properties for triples
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering such queries

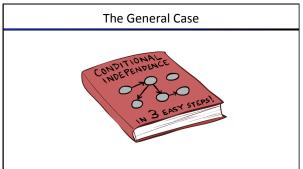
Causal Chains • This configuration is a "causal chain" Guaranteed X independent of Z? No! One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed. Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic In numbers: P(+y | +x) = 1, P(-y | -x) = 1, P(+z | +y) = 1, P(-z | -y) = 1 P(x, y, z) = P(x)P(y|x)P(z|y)

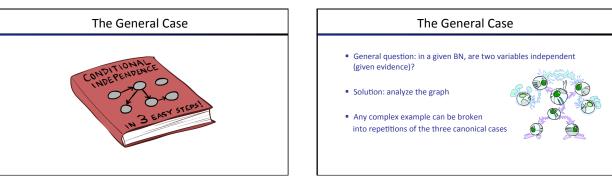
Causal Chains • Guaranteed X independent of Z given Y? • This configuration is a "causal chain" $P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$ $=\frac{P(x)P(y|x)P(z|y)}{2}$ P(x)P(y|x)=P(z|y)Yes! P(x, y, z) = P(x)P(y|x)P(z|y)Evidence along the chain "blocks" the influence

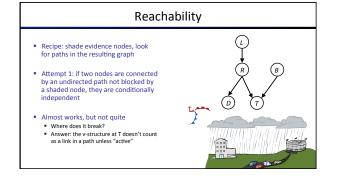


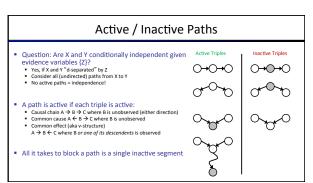












D-Separation

- Query: $X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- ullet Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1},...,X_{k_n}\}$$

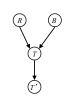
 Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp\!\!\!\perp X_j | \{X_{k_1},...,X_{k_n}\}$$



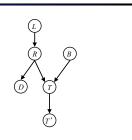
Example

 $R \perp \!\!\! \perp B$ $R \perp \!\!\! \perp B | T$ $R \perp \!\!\! \perp B | T'$



Example

 $L \perp \!\!\! \perp T' | T$ Yes $L \perp \!\!\! \perp B | T$



Example

- Variables:
- R: Raining
- T: Traffic
- D: Roof drips
- S: I'm sad

• Questions:

 $T \perp\!\!\!\perp D$ $T \perp\!\!\!\!\perp D | R$ $T \perp\!\!\!\!\perp D | R, S$

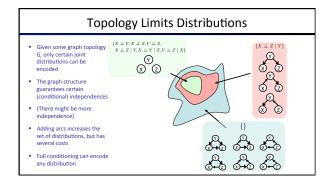
Structure Implications

 Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

This list determines the set of probability distributions that can be represented

Computing All Independences COMPUTE ALL THE INDEPENDENCES! X Z X Z X Z X Z X Z



Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

- **✓** Representation
- **✓** Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data