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Recap: Bayes’ Nets

= ABayes’ netisan
efficient encoding
of a probabilistic
model of a domain
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= Questions we can ask:
= Inference: given a fixed BN, what is P(X | e)?
= Representation: given a BN graph, what kinds of distributions can it encode?

= Modeling: what BN is most appropriate for a given domain?

Size of a Bayes’ Net

Bayes’ Nets

= How big is a joint distribution over N = Both give you the power to calculate
Boolean variables? .
P(X1,X2,...Xn)

2N
= BNs: Huge space savings!

= How big is an N-node net if nodes

have up to k parents? = Also easier to elicit local CPTs

O(N * 2k+1) = Also faster to answer queries (coming)
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JRepresentation
= Conditional Independences
= Probabilistic Inference

= Learning Bayes’ Nets from Data

Conditional Independence

Bayes Nets: Assumptions

= Xand Y are independent if
Vo,y P(z,y) = P(x)P(y) ---- X1Y
= X and Y are conditionally independent given Z
Va,y,z P(z,y|lz) = P(z|z)P(ylz) === X 1Y|Z

= (Conditional) independence is a property of a distribution

= Example: Alarm L Fire|Smoke

= Assumptions we are required to make to define the
Bayes net when given the graph:

P(xi|zy - 2-1) = P(x;|parents(X;))

= Beyond above “chain rule > Bayes net” conditional
independence assumptions

= Often additional conditional independences

= They can be read off the graph

= |mportant for modeling: understand assumptions made
when choosing a Bayes net graph




Independence in a BN

D-separation: Outline

Important question about a BN:

= Are two nodes independent given certain evidence?
= If yes, can prove using algebra (tedious in general)

= If no, can prove with a counter example

= Example:

= Question: are X and Z necessarily independent?
= Answer: no. Example: low pressure causes rain, which causes traffic.
= Xcaninfluence Z, Z can influence X (via Y)
. they could be il how?

D-separation: Outline

Causal Chains

= Study independence properties for triples
= Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering such
queries

= This configuration is a “causal chain” = Guaranteed X independent of Z? No!

- - One example set of CPTs for which X is not
—na 2000 independent of Z is sufficient to show this
":} ////// ﬁi independence is not guaranteed.

Example:
W%§> = Low pressure causes rain causes traffic,
high pressure causes no rain causes no

traffic
X: Low pressure  Y: Rain 2: Traffic
= In numbers:
P(e,3,2) = P@@)P(y|) P(2ly) Py )= 1oy |x)=1,

P(sz ] #y)=1,Pl2 [ y)=1

Causal Chains

Common Cause

= This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

Loas| [=22 o) P(a,y,2)
} ////// aal Plele,y) = P(z,y)
AN _ P(@)P(ylz)P(zly)
WZ>W§> = P@PG)

X: Low pressure Y: Rain Z: Traffic = P(Z\ll)

Yes!
P(x,y,z) = P(x)P(ylz)P “ ”
(@,9,2) (@) P(yle)P(:ly) = Evidence along the chain “blocks” the
influence

= This configuration is a “common cause”

Guaranteed X independent of Z? No!

¥: Project
due

One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

Example:

= Project due causes both forums busy
and lab full

= In numbers:
X: Forums

busy Z: Lab full

P(+x|+y)=1,P(-x|-y)=1,
P(+z]+y)=1,P(-z|y)=1

P(z,y,2) = P(y)P(z]y) P(z|y)




Common Cause

Common Effect

= This configuration is a “common cause” = Guaranteed X and Z independent given Y?
Y: Project ‘E‘T P(x,y,2)
due P(z|lz,y) = W
_ PP (ly) P(=ly)
T P(yP(aly)

= P(zly)

X: Forums ] B |
Z: Lab full
busy %" $ % Yes!
Pa—

P(z,y,2z) = P(y)P(z|y)P(z|y) = Observing the cause blocks influence

between effects.

= Last configuration: two causes of one = Are X and Y independent?

effect (v-structures;
( ) * Yes: the ballgame and the rain cause traffic, but

they are not correlated

X: Raining ¥: Ballgame

* | g = still need to prove they must be (try it!)
| i K L@Q

- > 2 = Are X and Y independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

= This is backwards from the other cases

N
e— * Observing an effect activates influence between
Z: Traffic Y

aal

possible causes.

The General Case

The General Case

= General question: in a given BN, are two variables independent

(given evidence)?
(LN gg
= Any complex example can be broken @

into repetitions of the three canonical cases /;@ @

= Solution: analyze the graph

Reachability

Active / Inactive Paths

= Recipe: shade evidence nodes, look o
for paths in the resulting graph

= Attempt 1: if two nodes are connected o o
by an undirected path not blocked by
a shaded node, they are conditionally

independent

= Almost works, but not quite
* Where does it break?
= Answer: the v-structure at T doesn’t count
asa link in a path unless “active”

= Question: Are X and Y conditionally independent given ~ Active Triples Inactive Triples
evidence variables {Z}?
* Yes,ifXand Y “d-separated” by Z O-0O~0
= Consider all (undirected) paths from X to Y
= Noactive paths = independence! o

= A path is active if each triple is active:
= Causal chain A > B - C where B is unobserved (either direction)
= Common cause A € B = C where B is unobserved
* Common effect (aka v-structure)
A= B & Cwhere B or one of its descendents is observed

= Allit takes to block a path is a single inactive segment

~4q b




D-Separation

Example

=auery: X; 1L X;{ Xy, ., X } ?

= Check all (undirected!) paths between X; and X;

= If one or more active, then independence not guaranteed

R B Yes o 9

RUB|T

Xi WX Xy, - X, }
RABI|T (7)

= Otherwise (i.e. if all paths are inactive),
then independence is guaranteed
X WL X { Xk oo, Xiey
Example Example
o = Variables:

= R: Raining
= T: Traffic o

LUT'|T Yes
L1B Yes
LU B|T
L1B|T'

LIB|IT,R Yes

= D: Roof drips

= S:I'msad o Q
= Questions:
T1D
TJJ_D‘R Yes
TID|R,S

Structure Implications

Computing All Independences

= Given a Bayes net structure, can run d-
separation algorithm to build a complete list of
conditional independences that are necessarily
true of the form

X AL X { Xk, oo X, }

= This list determines the set of probability
distributions that can be represented

MPuTE ALL THE
C(:\DEPEN\?E NCES!

R
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Topology Limits Distributions

Bayes Nets Representation Summary

(XLY,XWZYLZ G
Given some graph topology LZIVXLY|ZY LZ|X) {(Xuz|v}
G, only certain joint

distributions can be ®

encoded @ @

The graph structure
guarantees certain
(conditional) independences

(There might be more
independence)

Adding arcs increases the
set of distributions, but has
several costs

Full conditioning can encode
any distribution

e
3pdp-
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Bayes nets compactly encode joint distributions

Guaranteed independencies of distributions can be
deduced from BN graph structure

D-separation gives precise conditional independence
guarantees from graph alone

ABayes’ net’ s joint distribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution

Bayes’ Nets

JRepresentat—ion
JCondit—ionaI Independences

= Probabilistic Inference
= Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
= Probabilistic inference is NP-complete
= Sampling (approximate)

= Learning Bayes’ Nets from Data




