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Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables
as our probabilistic models:
= Unless there are only a few variables, the joint is WAY too
big to represent explicitly

* Hard to learn (estimate) anything empirically about more
than a few variables at a time

Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local
distributions (conditional probabilities)

More properly called graphical models

We describe how variables locally interact

Local interactions chain together to give global, indirect
interactions

For about 10 min, we’'ll be vague about how these
interactions are specified
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Example Bayes’ Net: Car

Graphical Model Notation

= Nodes: variables (with domains)

= Can be assigned (observed) or unassigned
(unobserved)

= Arcs: interactions
= Similar to CSP constraints
= Indicate “direct influence” between variables

= Formally: encode conditional independence
(more later)
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= For now: imagine that arrows mean ,
direct causation (in general, they don’ t!)

Example: Coin Flips

Example: Traffic

= N independent coin flips

® & - ®

= No interactions between variables: absolute independence

= Variables: N &
= R:ltrains %‘)
= T:Thereis traffic S

= Model 1: independence .

Model 2: rain causes traffic
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= Why is an agent using model 2 better?




Example: Traffic ll

Example: Alarm Network

Let’s build a causal graphical model!
Variables =
* T:Traffic -
* R:ltrains

= L:Low pressure
= D: Roof drips
= B:Ballgame

= C: Cavity
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= Variables
= B:Burglary ‘%
+ A Alarm goes off wr [ ]

= M: Mary calls 2 4 ~
= J:John calls
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= E: Earthquake! N

Bayes’ Net Semantics

Bayes’ Net Semantics e,

= Aset of nodes, one per variable X P,) ... PA4,)

= Adirected, acyclic graph Q e e
= A conditional distribution for each node

= A collection of distributions over X, one for each
combination of parents’ values ‘:%
P(Xlay...an)
P(X|Ap... A
= CPT: conditional probability table ( 141 n)

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
® As a product of local conditional distributions

* To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

P(ay, 22

)= ﬁ P(zi|parents(X;))
=1
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P(+-cavity, +catch, -toothache)

= Example:

Why are we guaranteed that setting

n
P(x1,22,...0n) = || P(zilparents(X;))
i=1
results in a proper joint distribution?

n
Chain rule (valid for all distributions): Py, ,...an) = [[ P(ailey...2i1)
i=1

Assume conditional independences: P(xilzy,...xi-1) = P(z;|parents(X;))

n
- Consequence:  P(ay,2,...an) = [ P(aj|parents(X;))
i=1

Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies




Example: Coin Flips

Example: Traffic
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P(X1) P(X2)

P(h,h,t,h) =

Only distributions whose variables are absolutely independent can be
represented by a Bayes " net with no arcs.

P(R)

P(+r,—t) =

P(T|R)
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Example: Alarm Network

Example: Traffic
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8| Pe = Causal direction
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+a | 4+ 0.9 +a | +m 0.7 -b | +e | +a 0.29 - t 6/16
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-a -j 0.95 -a -m 0.99 -b -e -a 0.999
Example: Reverse Traffic Causality?

= Reverse causality?

P(T)

P(R|T)

= When Bayes’ nets reflect the true causal patterns: ’
= Often simpler (nodes have fewer parents) ?
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)

= E.g. consider the variables Traffic and Drips

= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

* Topology may happen to encode causal structure
= Topology really encodes conditional independence
P(zj|zy,...2i—1) = P(x;|parents(X;))




Bayes’ Nets

= So far: how a Bayes’ net encodes a joint
distribution

= Next: how to answer queries about that
distribution
= Today:
= First assembled BNs using an intuitive notion of
conditional independence as causality

= Then saw that key property is conditional independence
* Main goal: answer queries about conditional
independence and influence

= After that: how to answer numerical queries
(inference)




