CSE-473 Introduction to Artificial Intelligence

Kalman Filters and Rao-Blackwelized Particle Filters

Bayes Filter Reminder

Prediction

$$\overline{bel}(x_{t}) = \int p(x_{t} | u_{t}, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$

Correction

$$bel(x_t) = \eta p(z_t \mid x_t) \overline{bel}(x_t)$$

Dieter Fox CSE473: Introduction to AI

CSE473: Introduction to AI

Dieter Fox

Kalman Filter Summary

- Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: O(k^{2.376} + n²)
- Optimal for linear Gaussian systems!
- Most systems are nonlinear → EKF

Dieter Fox CSE473: Introduction to AI

Graph-based Location Estimation

- Map is directed graph
- Location:
- Edge e
- Distance d from start of edge
- Prediction:
- Move along edges according to velocity model
- Correction:
- Update estimate based on GPS reading

Distance For

SE473: Introduction to Al

Key to goal / path prediction and error detection Customized model for each user Unsupervised model learning Learn variable domains (goals, trip segments) Learn transition parameters (goals, trips, edges) Training data 3 o days GPS readings of one user, logged every second (when outdoors) Dieter Fox CSE473: Introduction to AI 25

Rao-Blackwellised PF for Inference

- Represent posterior by random samples
- Each sample

$$s_i = \left< r_i, m_i, b_i \right> = \left< \left< x, y, \theta \right>_i, m_i, \left< \mu, \Sigma \right>_i \right>$$
 contains robot location, ball mode, ball Kalman filter

 Generate individual components of a particle stepwise using the factorization

$$\begin{split} p(b_k, m_{\text{l}_k}, r_{\text{l}_k} \mid z_{\text{l}_k}, u_{\text{l}_{k-1}}) &= \\ p(b_k \mid m_{\text{l}_k}, r_{\text{l}_k}, z_{\text{l}_k}, u_{\text{l}_{k-1}}) p(m_{\text{l}_k} \mid r_{\text{l}_k}, z_{\text{l}_k}, u_{\text{l}_{k-1}}) \cdot p(r_{\text{l}_k} \mid z_{\text{l}_k}, u_{\text{l}_{k-1}}) \end{split}$$
 Fox CSE473: Introduction to AI

Discussion

- Particle filters are intuitive and simple
 - Support point-wise thinking (reduced uncertainty)
 - It's an art to make them work
 - Good for test implementation if system behavior is not well known
- Inefficient compared to Kalman filter
- Rao-Blackwellization
 - Only sample discrete / highly non-linear parts of state space
- Solve remaining part analytically (KF,discrete)

 Dieter Fox

 CSE473: Introduction to AI

 CSE473: Introduction to AI