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CSE 473: Artificial Intelligence
Particle Filters

Dieter Fox --- University of Washington

Is are available at http://ai.berkel

Particle Filtering

Filtering: approximate solution

Sometimes |X| is too big to use exact inference
= |X| may be too big to even store B(X)
= E.g. Xis continuous
= |X|2 may be too big to do updates

Solution: approximate inference

Track samples of X, not all values

Samples are called particles

Time per step is linear in the number of samples
But: number needed may be large

In memory: list of particles, not states

This is how robot localization works in practice
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Representation: Particles

Particle Filtering: Elapse Time

= Each particle is moved by sampling its next

Our representation of P(X) is now a list of N particles (samples) ° |00 Particles 0
it it 33) o
« Generally, N << || o |e% position from the transition model @ S |e '\
= Storing map from X to counts would defeat the point H + = sample(P(X'|z)) o ° 8
w2
. N . PO . . . 3.3)
= P(x) approximated by number of particles with value x = This is like prior sampling — samples’ frequencies G3)
B reflect the transition probabilities @3
= So, many x may have P(x) = 0! —
= More particles, more accuracy 23 * Here, most samples move clockwise, but some move in
63 another direction or stay in place Pa(r;‘;\:s
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= For now, all particles have a weight of 1 e o 2L r'
w = This captures the passage of time Liv? ° *.
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Particle Filtering: Observe Particle Filtering: Resample
= Slightly trickier: pag:{r o = Rather than tracking weighted samples, we partices ——
G2) ®lo| e resample - al 8
= Don’t sample observation, fix it (3,1) ° >
33 ° ollc
Similar to likelihood weighting, downweight ] * N times, we choose from our weighted sample =
samples based on the evidence 23) ) L N N
G2 distribution (i.e. draw with replacement) °
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w(z) = P(e|z)
= This is equivalent to renormalizing the
B(X) o P(e|X)B'(X) distribution
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= As before, the probabilities don’t sum to one, 5 - NOW_the update is complete for this time step, i
since all have been downweighted (in fact they oS, continue with the next one ey O
now sum to (N times) an approximation of P(e)) (13)
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Recap: Particle Filtering

Video of Demo — Moderate Number of Particles

= Particles: track samples of states rather than an explicit distribution
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[Demos: particle filtering (L1503,4.5!

Video of Demo — One Particle

Video of Demo — Huge Number of Particles

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

= We want to track multiple variables over time, using
multiple sources of evidence

P

= |dea: Repeat a fixed Bayes net structure at each time
= Variables from time t can condition on those from t-1 » “\(\//\\/,

t=1 t=2
— 32@ —

= Dynamic Bayes nets are a generalization of HMMs

[Demo: pacman sonar ghost DBN model (L15D6)]




Video of Demo Pacman Sonar Ghost DBN Model Exact Inference in DBNs

= Variable elimination applies to dynamic Bayes nets

= Procedure: “unroll” the network for T time steps, then eliminate variables until P(X;|e, ;)

is computed
t=1 t=2 t=3
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= Online belief updates: Eliminate all variables from the previous time step; store factors
for current time only

DBN Particle Filters

A particle is a complete sample for a time step

Initialize: Generate prior samples for the t=1 Bayes net

- Example particle: 6,* = (3,3) G,°= (5,3) Some More Thoughts on Particle Filters
Elapse time: Sample a successor for each particle a nd Sa m p I | ng

= Example successor: G,*= (2,3) G,* = (6,3)

Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample
= Likelihood: P(E,? |G,?) * P(E," | G,*)

Resample: Select prior samples (tuples of values) in proportion to their likelihood

Robot Localization o

* In robot localization: Plecew|se —
= We know the map, but not the robot’s position . A A A =
= Observations may be vectors of range finder readings T oiRecToRY Co n sta n t Be I | ef Tsd(x? .

State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)
Particle filtering is a main technique
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Piecewise Constant Representation

Proximity Sensor Model
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Probabilistic Robotics

Probabilistic Kinematics

Probabilistic Kinematics

* Robot moves from (%,7,8) to (¥',5',8")

e Odometry information u= <5m” , &.012.’ 5mm>

Cppans =~ (F'=3)* +(F'=3)?

S.,4 =atan2(y'—y,x'—-x)— 6

rotl

—0'—-60
6;«012 =0'-6 — 5rr)tl 5r{)t2

= Odometry information is inherently noisy.
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Sample-Based Density Approximation

Importance Sampling Principle

Particle sets can be used to approximate densities

We can use a different distribution g to generate samples from f°

By introducing an importance weight w, we can account for the “differences
smpier | 2 between g and
vl
g B % fis often called proposal(x)
£ T T~ £ target = lm‘gclgx)
B~ — g ~ X = samples
[ LTI R LT 0TI RN | gis often called B
x x proposal =
The more particles fall into an interval, the higher the probability of that interval f;: T
S —
How to draw samples form a function/distribution? T ll”\ll.lllllllﬂ.ll.ll.“””‘ | 1
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Particle Filters

Sensor Information: Importance Sampling

Bel(x) <« o p(z|x)Bel (x)
o p(z|x) Bel (x)
Bel (x)
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Robot Motion
— Bel (x) <« [p(x|u.x)Bel(x') dx

Sensor Information: Importance Sampling
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Robot Motion Particle Filter Algorithm

_‘Bel_(x) <« _[p(x|u,x')Bel(x') dxi

Bel (x) = 1 p(z,1%) [ P3| x,1,0,,) Bel (x.,) d,.

draw x',_, from Bel(x,_,)

draw ¥, from p | x-11.,)

Importance factor for x/:

target distribution
proposal distribution

w =
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Sampled Motion Model
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Particle Filter Localization (Sonar)

Localization for AIBO robots

[Video: global-floor.gif]




Hybrid Model for People Tracking

WiFi Sensor Model

Variance

Tracking Example

Adaptive Sampling
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KLD-Sampling Sonar

KLD-Sampling Laser

Adapt number of particles on the fly based
on statistical approximation measure

10



Robot Mapping

Particle Filter SLAM — Video 2

= SLAM: Simultaneous Localization And Mapping
We do not know the map or our location
State consists of position AND map!

Main techniques: Kalman filtering (Gaussian HMMs)
and particle methods

DP-SLAM, Ron Parr

[Demo: PARTICLES-SLAM-mapping1-new.avi

[Demo: PARTICLES-SLAM-fastslam.avi
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