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Hidden Markov Models

Hidden Markov Models

Example: Weather HMM

= Markov chains not so useful for most agents
= Need observations to update your beliefs

= Hidden Markov models (HMMs)
= Underlying Markov chain over states X
® You observe outputs (effects) at each time step
= Asa Bayes’s net (or more generally, a graphical model):
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Ghostbusters HMM

Joint Distribution of an HMM

= P(X,) = uniform
= P(X’|X) = ghosts usually move clockwise,
but sometimes move in a random direction or stay put

= P(E|X) = same sensor model as before:
red means close, green means far away.
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= Joint distribution:
P(X1,Ey, X, By, X3, E3) = P(X1)P(E1|X1)P(X2|X1)P(E2| X2)P(X3|X2)P(Es| X3)
= More generally: s
P(X1,Ey,..., Xr, Br) = P(X))P(Eq|X1) [| P(Xi|Xio1) P(EL|X0)
= Questions to be resolved: =2
= Does this indeed define a joint distribution?

= Can every joint distribution be factored this way, or are we making some assumptions about the
joint distribution by using this factorization?
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Chain Rule and HMMs

Chain Rule and HMMs

= From the chain rule, every joint distribution over X,, E|, X,, E,, X3, E3 can be written as:

P(X1, By, Xa, B, X3, B3) =P(X1)P(E1|X1) P(X2| X1, By ) P(E2| X1, Br, X2)
P(X3|X1, E1, X2, E5)P(E5| X1, Er, X, Eb, X3)
= Assuming that
o U By | Xy, Ex WL X1,Ey | Xo, X3l X4,E1,Ey | Xo, E3 1l Xy,E,Xs,Ey | X}
gives us the expression posited on the previous slide:

P(X1,Ey, X, By, X3, E3) = P(X1)P(E1| X1)P(X2| X1)P(E>| X2)P(X3|X2)P(E3| X3)

= From the chain rule, every joint distribution over x, E, ... Xp, Ep canbe written as:

T
P(Xy,By,...., Xp, Br) = P(X0)P(Ey| X)) [[ PO, By Xy, B ) P(EX0 B Xy, By, X))
=2
= Assuming that for all t:
= State independent of all past states and all past evidence given the previous state, i.e.:

Xe L X0, By, X0, By 9, By | X

* Evidence is independent of all past states and all past evidence given the current state, i.e.:

Ei L X1,E1,..., X9, B 9, X4 1, B 1 | X
gives us the expression posited on the earlier slide:
T

P(Xy, Br,..., Xr, Br) = P(X)P(BUX) [T PXX-) P(ENX)

Conditional Independence

Conditional Independence

= HMMs have two important independence properties:

= Markov hidden process: future depends on past via the present

= HMMs have two important independence properties:
= Markov hidden process: future depends on past via the present

= Current observation independent of all else given current state
?
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Conditional Independence

= HMMs have two important independence properties:
= Markov hidden process: future depends on past via the present

= Current observation independent of all else given current state
?
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= HMMs have two important independence properties:
= Markov hidden process: future depends on past via the present

= Current observation independent of all else given current state
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= Quiz: does this mean that evidence variables are guaranteed to be independent?

= [No, they are correlated by the hidden state(s)]




Real HMM Examples

HMM Computations

Speech recognition HMMs:
= Observations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:
® Observations are words (tens of thousands)
= States are translation options

Robot tracking:
® Observations are range readings (continuous)
= States are positions on a map (continuous)

= Given
= parameters
= evidence Ey,, =ey,,

= Inference problems include:
= Filtering, find P(X,|e,.) for all ¢
= Smoothing, find P(X|e,.,) for all ¢
= Most probable explanation, find
X*l:n = argmaxs;., P(xl:n‘elzn)

Filtering / Monitoring

Example: Robot Localization

Filtering, or monitoring, is the task of tracking the distribution
B.(X) = Pi(X; | €, ..., &) (the belief state) over time

We start with By(X) in an initial setting, usually uniform

As time passes, or we get observations, we update B(X)

The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program

= (Kalman filter is a type of HMM with continuous values)

Example from
Michael Pfeiffer

[ |
Prob 0 1

t=0
Sensor model: can read in which directions there is a wall,
never more than 1 mistake
Motion model: may not execute action with small prob.

Example: Robot Localization

Example: Robot Localization

[ |

Prob 0 1
t=1
Lighter grey: was possible to get the reading, but less likely b/c
required 1 mistake

Prob 0 1

t=2




Example: Robot Localization

Example: Robot Localization
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Example: Robot Localization Inference: Base Cases
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Passage of Time

Example: Passage of Time

= Assume we have current belief P(X | evidence to date)
B(Xy) = P(X¢le1:4)

= Then, after one time step passes:
P(Xiqalerd) =" P(Xun ailers)
e
B Z P(Xpi1|ze, er:) Plailers) = Or compactly:
= iP(XH»l‘Zt)P(J'T‘('] t) B(Xu) = ;P(X,‘Zﬁ)u(”)
k2

= Basic idea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what
evidence it include:

= As time passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)




Video of Passage of Time (Transition Model)

Observation

= Assume we have current belief P(X | previous evidence):
B'(Xi+1) = P(Xeqaler)
= Then, after evidence comes in:
P(Xipilerit1) = P(Xig1s ervler) /Ples
XXy P( X1, ervalen)

€1:t)

= P(ertalers, Xer1)P(Xerler)

= P(@H-l‘XH—l)P(XH—I

c1:t)

= Basic idea: beliefs “rewei
= Or, compactly: by likelihood of evidence
B(Xi41) ocxy Ples1|Xig1) B/ (Xi41)
to renormalize

ghted”

= Unlike passage of time, we havq

Example: Observation

[
Example: Weather HMM &

= As we get observations, beliefs get reweighted, uncertainty “decreases”

After observation

Before observation

B(X) oc Pe| X)B'(X)
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The Forward Algorithm

Online Belief Updates

= We are given evidence at each time and want to know

Bi(X) = P(Xtle1:s)

= We can derive the following updates
We can normalize as we go if we
X P want to have P(x| ) at each time
Plailers) xx Plre e1:) step, or just once at the end...
= > P(ee1,31e1:)
Tro1
=Y Playoy.e14o1) Ploilme_1) Pleda)

Te-1

= Plegla) 3 Plaglag 1) Pl 1,e14-1)
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Every time step, we start with current P(X | evidence)

We update for time:

On0

P(rilers—1) = 3 Ple_iler—1) - Plaglae1)
@1

We update for evidence:

P(xler:y) ooy Plaglery—1) - Pledar)

The forward algorithm does both at once (and doesn’t normalize)
Potential issue: space is | X| and time is |X|?2 per time step ‘




Pacman — Sonar (P4)

Video of Demo Pacman — Sonar (with beliefs)

SCORE: -6

[Demo: Pacman — Sonar — No Beliefs(L14D1

HMM Computations (Reminder)

Smoothing

= Given
= parameters
= evidence Ey,, =ey.,

= Inference problems include:
= Filtering, find P(X,|e,,) for all ¢
= Smoothing, find P(X/|e,.,) for all ¢
= Most probable explanation, find
x*lin = argmaXxy,,, P(xl:nlel:u)

= Smoothing is the process of using all evidence better individual
estimates for a hidden state (or all hidden states)

= |dea: run FORWARD algorithm up until t, and a similar BACKWARD
algorithm from the final timestep n down to t+1

P(Xilern) = aP(Xler)Pleriinl Xy, 1)
QP(Xt|61:t)P<6t+1:n|Xt)
- afl:l, X bH~1:1L

Most Likely Explanation

HMMs: MLE Queries

= HMMs defined by
OSOC OO
= Observations E
= Initial distribution: P(X1) ‘ ‘ ‘ ‘
= Transitions: P(X|X_1)

= Emissions: P(E|X)

= New query: most likely explanation: arg max P(xz1:4le1:4)
Tl

= New method: the Viterbi algorithm




State Trellis

Forward / Viterbi Algorithms

State trellis: graph of states and transitions over time
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Each arc represents some transition Tg—1 — Tt
Each arc has weight  P*(zelzg—1) P (eelat)
Each path is a sequence of states

The product of weights on a path is that sequence’s probability along with the evidence
Forward algorithm computes sums of paths, Viterbi computes best paths

Forward Algorithm (Sum) Viterbi Algorithm (Max)

filwd] = P(a, ex:t) mylr] = max P(w1:p-1, @, e1:0)

= Plerlre) T Plarfee 1fe alre 1] = Plorkes) max Plarler 1y sle 1]

Most Probably Explanation (Sequence)

Viterbi algorithm: very similar to filtering algorithm (FORWARD)
Essentially: replace “sum” with “max”, keep back pointers

Rain | Rain, Rainy Rain, Rain 5
state
space
paths

farlse false false Jalse false
umbrella false

8182 5155 0361 0334 0210
most
likely <
patts 1818 X 0491 X 1237 0173 0024

m m, m m m

13 14 1:5




