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Topics from 30,000’

= We' re done with Part | Search and Planning!

= Part lI: Probabilistic Reasoning
= Diagnosis
® Speech recognition
= Tracking objects
= Robot mapping
= Genetics

= Error correcting codes
= ... lots more!

= Part lll: Machine Learning

Outline

Uncertainty

= Probability
= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution
= Product Rule, Chain Rule, Bayes’ Rule
= Inference
= Independence

= You'll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!

= General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is

Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge

What is....?

Value Random Variable
PW)
Probability
an o1 / Distribution
rain 0.1
fog 0.3
meteor | 0.0

Joint Distributions

= A joint distribution over a set of random variables: X1, Xo,... Xn
specifies a probability for each assignment (or outcome):
P(X1=1x1,X0=x0,...Xn =1p)
P(T,W
P(z1,22,...2n) ( )

= Must obey: P(x1,22,...an) > 0 hot | sun | 04
hot | rain 0.1

P(zy,29,...a0p) =1 cold | sun | 0.2

cold | rain | 0.3

= Size of joint distribution if n variables with domain sizes d?

* For all but the smallest distributions, impractical to write out!




Probabilistic Models

Events

Distribution over T,W

= A probabilistic model is a joint distribution
over a set of random variables

= Aneventis a set E of outcomes

- ” a P(E)= Y. P(ai...an)
= Probabilistic models: ho un . (@1..2n)€E
= (Random) variables with domains ot rain 0.1 L o P(T.W
* Joint distributions: say whether assignments cold | sun | 02 = From a joint distribution, we can (T, W)
(called “outcomes”) are likely calculate the probability of any event = W 5
* Normalized: sum to 1.0 cold rain 03
= Ideally: only certain variables directly interact = Probability that it's hot AND sunny? hot sun 0.4
Constraint over T,W hot 01
ot | rain .
= Constraint satisfaction problems: T w P = Probability that it's hot? d
= Variables with domains © sun | 02
= Constraints: state whether are possible |_hot | sun T = Probability that it's hot OR sunny? cold | rain | 03
= Ideally: only certain variables directly interact hot rain F
cold | sun F = Typically, the events we care about
cold | rain T are partial assignments, like P(T=hot)
Quiz: Events Marginal Distributions
= P(+x, +y) ? P(X,Y) * Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by adding
P(T)
+x | +y | 02
" P(+x)? +X vy | 03 hot | 05
x | +y | 04 Py =Y P(ts) Lo [ o5 ]
X y | 01 g

= P(-y OR +x) ?

P(s) =Y P(L.s)
t

P(X;=a1) = Y P(X1 = a1, X2 = a2)
x2

Quiz: Marginal Distributions

Conditional Probabilities

P(X)
P(X,Y)
X Y P
+x 4y 0.2 P(z) =) P(z,y)
x y 03 v
x |+ | o4
» , o1 —

P(y) =3 P(z,9)

= Asimple relation between joint and marginal probabilities
= In fact, this is taken as the definition of a conditional probability

P(a,b)
Palb) =
(@) =720
PEW) Pla)
e P(W=sT=c) _02
hot | sun | 04 PW=sll =)=—"2r 53— =0s

=P(W=sT=c)+P(W=nT=c)
=02403 =05




Quiz: Conditional Probabilities

Conditional Distributions

" P+x | +y)? = Conditional distributions are probability distributions over some variables
given fixed values of others
P(X,Y)
Conditional Distributions Joint Distribution
wx | 4y | 02 P(W|T = hot) P, W)
" Plx | +y)?
+X -y 0.3
X |ty | 04 g hot | sun | 04
X y 0.1 = hot rain 0.1
32 cold | sun | 02
" Py | +X)? cold | rain | 03
Conditional Distribs - The Slow Way... Normalization Trick
P(W = s|T = _ FPW=rT=
P(T,\W
( ) P(T, W) SELECT the joint NORMALIZE the
= probabilities : selection ST =
bt L |0 S o) et POVIT =0
hot sun 0.4 evidence

cold sun 0.2 d 02
cold | rain | 03 PW=rT=0)= ol |
cold rain 0.3
_ PW=rT=c)
T PW=sT=c)+PW=nT=c) -
0.3 06
02+03
Normalization Trick Quiz: Normalization Trick
= P(X | Y=-y)?
P(T,W) SELECT the joint NORMALIZE the
probabilities ; selection PW|T = P(X,Y SELECT the joint
v W b matczingthe P(c,W)  (makeitsum to one) (W] °) ( ) pmbzbiﬁt{z:‘ NomsvllAELclﬁ:ne
g the (make it sum to one
hot | rain 0.1 +x 4y 0.2 evidence
cold | sun | 02 +x y 03 —_—
cold | rain 0.3 X 4y 0.4
X y 0.1

®= Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

P(ey,w0) _ Pa1,22)

Pl = "0 = Sy Plaraa)




To Normalize

Probabilistic Inference

= Dictionary: “To bring or restore to “

Al entries sum to ONE

= Procedure:
= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Probabilistic inference =

“compute a desired probability from other known
probabilities (e.g. conditional from joint)”

®= We generally compute conditional probabilities
= P(on time | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Example 1 = Example 2
Normalize T w P = Probabilities change with new evidence:
sun | 0.2 | e | sun | 0.4 hot | sun | 20 Normalize | hot | sun | 04 * P(on time | no accidents, 5 a.m.) =0.95
I rain ‘ 03 I Z=05 I rain ‘ 06 I hot | rain 5 hot | rain | 0.1 = P(on time | no accidents, 5 a.m., raining) = 0.80
- cold | sun | 10 cold | sun | 02 = Observing new evidence causes beliefs to be updated
cold | rain | 15 cold | rain | 03
Inference by Enumeration Inference by Enumeration
* Works fine with
= General case: = We want multile query
® Evidencevariables:  E1...Ep=e1...ex | x ¥, variables, too s T W
X1, Xo, = P(W)?
* Query*variable:  Q P(Qler .. ep)
« Hidden variables: Hy.o H, All variables | k summer | hot | sun | 0.30

= Step 1: Select the .
entries consistent
with the evidence

Step 2: Sum out H to get joint -
of Query and evidence

P(Q,(‘]...t:k):/z:’ P(Q k1. hrier...ep)

h

X1. X5, X,

Step 3: Normalize

1

summer | hot | rain | 0.05

summer | cold | sun | 0.10

. il ?
P(W | winter)? summer | cold rain | 0.05

winter | hot | sun | 0.10

winter | hot | rain | 0.05

winter | cold | sun | 0.15

= P(W | winter, hot)? winter | cold | rain | 0.20

Inference by Enumeration

The Product Rule

= Computational problems?
= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution

= Sometimes have conditional distributions but want the joint

P(y)P(zly) = P(x,y)

«~ I

P

>(| =7)
= Py o)

n




The Product Rule

The Chain Rule

P(y)P(x|y) = P(x,y)

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(xy,w2,w3) = P(x1) P(w2le1) P(wzley, 22)

P(D,W) P(ar,2,...2n) = [[ P(zilzy...2i-1)
D w P ‘
wet sun
m dry sun
-raln -D 2 ). wet rain
dry | rain
Independence Example: Independence?
= Two variables are independent in a joint distribution if P(T)
P(X,Y) = P(X)P(Y) Tl
X1y hot | 05 i
Va,y P(z,y) = P(2)P(y) % Py(T, W) old | 05 Py (T, W) = P(T)P(W)
* Says the jointdistibution factors into a product of twosimple ones Q) T w P T w [P
= Usually variables aren't independent! > hot | sun | 0.4 hot | sun | 03
hot rain 0.1 hot rain 0.2
® Can use independence as a modeling assumption cold sun 0.2 cold sun 0.3
= Independence can be a simplifying assumption wold | ran | 03 P(W) od | ran |02
= Empirical joint distril atbest “close” to — w | P
* What could we assume for {Weather, Traffic, Cavity}?
sun 0.6
rain 0.4

Independence is like something from CSPs: what?

Example: Independence

Conditional Independence

= N fair, independent coin flips:

P(X1) P(X2) P(Xn)

H |os H |os H | os
T |os T _|os T o5

P(X1,Xo,.

on




Conditional Independence

Conditional Independence

P(Toothache, Cavity, Catch)

If I have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:
= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’ t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| ~cavity)

Catch is conditionally independent of Toothache given Cavity
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements

= P(Toothache | Catch , Cavity) = P(Toothache | Cavity)

= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily

= Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= Xis conditionally independent of Y given Z XJLY‘Z

if and only if:
Vz,y,z : P(z,y|z) = P(z|z)P(y|z)
or, equivalently, if and only if

Va,y,z 1 P(alz,y) = P(zz)

Conditional Independence

Conditional Independence

* What about this domain:

= Traffic
= Umbrella
= Raining

* What about this domain:

= Fire
= Smoke
= Alarm

Bayes Rule

Pacman — Sonar (P4)

SCORE: -9 g XXX 12.0

[Demo: Pacman - Sonar — No Beliefs(L14D1]

)}




Ghostbusters Sensor Model

Values of Pacman’s Sonar Readings

Video of Demo Pacman — Sonar (no beliefs)

[ pred| 3)

[ Plorange | 3) | Plyellow |3) | Plgreen [3) |
00s |

015 | os

0.3

Real Distance = 3

Bayes’ Rule

= Two ways to factor a joint distribution over two variables:
P(z,y) = P(z|y) P(y) = P(y|x) P(x)

= Dividing, we get:

Inference with Bayes’ Rule

Paly) = T p(a)

® Why is this at all helpful?
* Lets us build one conditional from its reverse

= Often one conditional i tricky but the other one is simple
= Foundation of many systems we'll see later (e.g. ASR, MT)

= In the running for most important Al equation!

= Example: Diagnostic probability from causal probability:
P Jeffect) — P(effect|cause) P(cause)

- P(effect)
= Example:

= M: meningitis, S: stiff neck

Example
givens

P(+m) = 0.0001
P(+s|+m)=0.8
P(+s| —m) = 0.01
Pl 0y = PCLEmPG)

P(4s| + m)P(+m)
P(rs)

_ 0.8 x 0.0001
= P(s|+ m)P(+m) + P(+s| —m)P(—m) _ 0.8 x 0.0001 + 0.01 x 0.999

= Note: posterior probability of meningitis still very small

=0.0079
= Note: you should still get stiff necks checked out! Why?

Ghostbusters, Revisited

= Let’s say we have two distributions:

= Prior distribution over ghost location: P(G)
= Let’s say this is uniform

= Sensor reading model: P(R | G)

Video of Demo Gh

sters with Probability

= Given: we know what our sensors do
= R = reading color measured at (1,1)
= E.g. P(R =yellow | G=(1,1)) =0.1

= We can calculate the posterior distribution
P(G|r) over ghost locations given a reading

using Bayes’ rule: Plr)  P(rlg)P(g) n

[Demo: Ghostbuster - with probability (L12D2) ]




Probability Recap

Conditional probability P(zly) = P@,y)
P(y)
Product rule P(z,y) = P(zly) P(y)
Chain rule P(X1,X2,...Xn) = P(X1)P(Xo|X1)P(X3|X1,X2)...
=[] P(Xi| X1, Xio1)

i=1

Bayes rule P(zly) = %1’@)
y

X, Y independent if and only if:  Vz,y: P(z,y) = P(z)P(y)

X and Y are conditionally independent given 22 X 1LY|Z
if and only if: Va,y,2 1 P(z,yl2) = P(a]=)P(y|z)




