

How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 With (large) probability 1-ε, act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 Another solution: exploration functions

Video of Demo Q-learning – Manual Exploration – Bridge Grid

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions • When to explore? Random actions: explore a fixed amount Better idea: explore areas whose badness is not (yet) established, eventually stop exploring \blacksquare Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u,n)=u+k/nRegular Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$ $\textbf{Modified Q-Update: } Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'),N(s',a'))$ • Note: this propagates the "bonus" back to states that lead to unknown states as well!

Feature-Based Representations - Solution: describe a state using a vector of features (aka "properties") - Old that capture important properties of the state - Example features: - Distance to closest stot - Number of ghosts - 1 / (dist to dot)² - 15 Peacman in a tunnel? (0/1) - 15 Tell - 15 Tell - Can also describe a p-taste (s, a) with features (e.g. action moves closer to food)

Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 Q-learning's priority: get C-values close (modeling)
 Action selection priority: get ordering of Q-values right (prediction)
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search Simplest policy search: Start with an initial linear value function or Q-function • Nudge each feature weight up and down and see if your policy is better than before Problems: • How do we tell the policy got better? ■ Need to run many sample episodes! If there are a lot of features, this can be impractical Better methods exploit lookahead structure, sample wisely, change multiple parameters..

Controlling a Low-Cost Robotic Manipulator

- Low-cost system (\$500 for robot arm and Kinect)
 Vary proley
 No sensor information about robot's joint
 configuration used
 Gasi: Learn to stack tower of 5 blocks from
 scratch
 Kinect camera for tracking block in end-effector
 State: coordinates (3D) of block center (from
 Kinect camera)
 4 controlled DoF
 20 learning titlas for stacking 5 blocks (5 seconds
 Account for system noise, e.g.,
 Robot arm
 Image processing

That's all for Reinforcement Learning!

- Very tough problem: How to perform any task well in an unknown, noisy environment!
- Traditionally used mostly for robotics, but becoming more widely
- Lots of open research areas:
- How to best balance exploration and exploitation?
- How to deal with cases where we don't know a good state/feature representation?

Midterm Topics

- Agency: types of agents, types of environments
- Search
- Formulating a problem in terms of search
- Algorithms: DFS, BFS, IDS, best-first, uniform-cost, A*, local
- Heuristics: admissibility, consistency, creation
- Constraints: formulation, search, forward checking, arc-consistency, structure
- Adversarial: min/max, alpha-beta, expectimax
- Formulation, Bellman eqns, V*, Q*, backups, value iteration, policy iteration

33

Conclusion

- We're done with Part I: Search and Planning!
- We've seen how AI methods can solve problems in:
 - problems in:
 Search
 Constraint Satisfaction Problems
 Games
 Markov Decision Problems
 Reinforcement Learning

- Next up: Part II: Uncertainty and Learning!

