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Reinforcement Learning

Reinforcement Learning

State: s

The “Credit Assignment” Problem

I'm in state 43,

Reward: r Actions: a

Environment

= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function

= Basicidea:

= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

reward =0, action =2
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The “Credit Assignment” Problem

Exploration-Exploitation tradeoff

I'm in state 43, reward =0, action = 2
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Yippee! | got to a state with a big reward!
But which of my actions along the way
actually helped me get there??

This is the Credit Assignment problem.

= You have visited part of the state space and found a reward of 100
= is this the best you can hope for???
= Exploitation: should | stick with what | know and find a good policy w.r.t.
this knowledge?
= at risk of missing out on a better reward somewhere

= Exploration: should | look for states w/ more reward?
= at risk of wasting time & getting some negative reward




Example: Learning to Walk

Example: Learning to Walk

Initial

2 s

A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Initial
[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

The Crawler!

Finished

[Kohl and Stone, ICRA 2004]

Video of Demo Crawler Bot

Reinforcement Learning

= Still assume a Markov decision process (MDP):
A set of statessin S

Aset of actions ain A

A transition function T(s, a, s’)

A reward function R(s, a, s’) %

@

= Still looking for a policy rt(s)

= New twist: don’t know T or R
= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Ovenes




Offline (MDPs) vs. Online (RL)

Passive Reinforcement Learning

gﬂ%

Offline Solution

Online Learning

Passive Reinforcement Learning

Model-Based Learning

Simplified task: policy evaluation

= Input: a fixed policy m(s)

® You don’t know the transitions T(s,a,s’)
® You don’t know the rewards R(s,a,s’)

® Goal: learn the state values

= In this case: -
= Learner is “along for the ride”
* No choice about what actions to take
= Just execute the policy and learn from experience
= This is NOT offline planning! You actually take actions in the world.

Model-Based Learning

Example: Model-Based Learning

= Model-Based Idea:
= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
* Normalize to give an estimate of 7'(s, a, s)
= Discover each R(s, a,s’) when we experience (s, a, s')

= Step 2: Solve the learned MDP
= For example, use value iteration, as before

Input Policy 1t Observed Episodes (Training) Learned Model
Episode 1 Episode 2 T(s,a,s")

E] B, east, C, -1 B, east, C, -1
C, east, D, -1 C, east, D, -1
El. D, exit, X, +10 D, exit, x, +10
] of[o]
H

(B, east, C) = 1.00
T(C, east, D) =0.75
T(C, east, A) = 0.25

Episode 3 Episode 4 R(s,a,s")
E, north, C, -1 E, north, C, -1 | R(B, east, €) = -

1

R(C, east, D) = -1

C,east, D,-1 C, east, A -1 R(D, exit, x) = +10
D, exit, x,+10 A, exit, x,-10

Assume: y =1




Example: Expected Age

Model-Free Learning

Goal: Compute expected age of cs473 students

Known P(A)
E[A]=) Pla)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... ay]

Unknown P(A): “Model Based” Y\ /__ Unknown P(A): “Model Free”

‘\ 1N
4/ -1

Why does this Pla) = 2m(a) Why does this
work? Because 7 work? Because
eventually you ) ] samples appear
learn the right E[A]= Y Pla)-a ‘ with the right
model. . frequencies.

DouBLE’

b o

Direct Evaluation

Example: Direct Evaluation

Goal: Compute values for each state under 1t

Idea: Average together observed sample values

= Act according to 1t

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be

= Average those samples

= This is called direct evaluation

Input Policy Tt Observed Episodes (Training) Output Values
Episode 1 Episode 2
E] B, east, C, -1 B, east, C, -1
C, east,D,-1 C, east, D, -1
El. D, exit, x, +10 D, exit, x, +10
] of[o]
- Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C east, D,-1 C east, A, -1

Assume: p= 1 D, exit, x,+10 A, exit, x,-10

Problems with Direct Evaluation

Why Not Use Policy Evaluation?

= What's good about direct evaluation?
= It's easy to understand
= |t doesn’t require any knowledge of T, R

Output Values

= It eventually computes the correct average values,
using just sample transitions

= What's bad about it?
= It wastes information about state connections
= Each state must be learned separately
= So, it takes a long time to learn

IfB.and E both go to C
under this policy, how can
their values be different?

= Simplified Bellman updates calculate V for a fixed policy:
= Each round, replace V with a one-step-look-ahead layer over V

Vi (s)=0

Vi1 (s) « Y T(s,m(s), ) R(s, m(s), ') + V()]

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

= Key question: how can we do this update to V without knowing T and R?
= In other words, how do we take a weighted average without knowing the weights?




Sample-Based Policy Evaluation?

Temporal Difference Learning

= We want to improve our estimate of V by computing these averages:
Vi1 (s) = YT (s,m(s), s)[R(s, 7(s),8") + Vi ()]

E
= |dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,7(s),s1) + vV (sh) i .
sampley = R(s,7(s), s5) + YV (sh) ‘ )f | ~
samplen = R(s,7(s), s},) + YV (sh)
VT, E 1 7
T1(s) < . > sample;
i

= Bigidea: learn from every experience! s
= Update V(s) each time we experience a transition (s, a, s’, r) ()
= Likely outcomes s’ will contribute updates more often
s, (s)
= Temporal difference learning of values
= Policy still fixed, still doing evaluation! M
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s") + V™ (s")
UpdatetoV(s): V7 (s) (1 — a)V™(s) + (a)sample

sameupdate:  V7(s) « V7(s) + a(sample — V7 (s))

Exponential Moving Average

Example: Temporal Difference Learning

= Exponential moving average
= The running interpolation update: Zn = (1 — @) - Zp 1 + @ - 2y

* Makes recent samples more important:

_apt(l—a)-zp g+ (1—a)?-a
I+(1-a)+(1-a)?+...

2+...

= Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate (alpha) can give converging averages

States Observed Transitions

[ B, east, C, -2 ] [ C, east, D, -2 ]

Assume:y=1,a=1/2

Problems with TD Value Learning

Active Reinforcement Learning

= TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

= However, if we want to turn values into a (new) policy, we’re sunk:
7(s) = argmax Q(s,a)
a

Q(s,0) =Y T(s,a,8") \n(, a,s") +V(s")

= |dea: learn Q-values, not values

= Makes action selection model-free too!




Active Reinforcement Learning

Detour: Q-Value Iteration

= Full reinforcement learning: optimal policies (like value iteration)
® You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
* You choose the actions now
= Goal: learn the optimal policy / values

In this case:
= Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world and
find out what happens...

= Value iteration: find successive (depth-limited) values
= Start with V,(s) = 0, which we know is right
* Given V,, calculate the depth k+1 values for all states:

Vig1(s) « max 3 T(s,a,5) [R(s. a,8') + v l"},,(s’)]

= But Q-values are more useful, so compute them instead
= Start with Qy(s,a) = 0, which we know is right
= Given Q, calculate the depth k+1 g-values for all g-states:

Qryr(s,0) « Y T(s,a,5) [n(s.u.s') + Max Qu(s' )

Q-Learning

Q-Learning

= Q-Learning: sample-based Q-value iteration

Quy1(s:0) « Y T(s,a,5) [R(s.u. )44 me/sz‘.(s’.u’)}

= Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)

= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a, ') + 7 maxQ(s',a)
® Incorporate the new estimate into a running average:

Q(s,a) — (1 - a)Q(s.a) + (a) [sample]

= Foralls, a
= Initialize Q(s, a) =0
= Repeat Forever
Where are you? s
Choose some action a
Execute it in real world: (s, a, 1, )
Do update:

Q(s,a) — (1 —a)Q(s,a) + () [r+~ mﬂa,xQ(s/. a')

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler




Q-Learning Properties

Two main reinforcement learning approaches

= Amazing result: Q-learning converges to optimal policy -- even
if you're acting suboptimally!

= This is called off-policy learning

= Caveats:
® You have to explore enough
* You have to eventually make the learning rate
small enough f—
= ... but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)

= Model-based approaches:

explore environment & learn model, T=P(s’|s,a) and R(s,a), (almost) everywhere
use model to plan policy, MDP-style

approach leads to strongest theoretical results

often works well when state-space is manageable

= Model-free approach:

don’t learn a model; learn value function or policy directly

= weaker theoretical results
= often works better when state space is large

The Story So Far: MDPs and RL

Two main reinforcement learning approaches

Known MDP: Offline Solution

Goal Technique
Compute V¥, Q*, * Value / policy iteration

Evaluate a fixed policy 1t Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique Goal Technique

Compute V¥, Q%, n* VI/PI on approx. MDP Compute V¥, Q%, * Qlearning

Evaluate afixed policyn  PE on approx. MDP Evaluate afixed policyn  Value Learning

= Model-based approaches:
Learn  T+R
|S|2|A] + S| |A| parameters (40,400)

= Model-free approach:
Learn Q
|SI|A| parameters (400)

Video of Demo Q-Learning Auto Cliff Grid




