CSE 473: Introduction to Artificial Intelligence

Reinforcement Learning

Based on Slides by Dan Klein and Pieter Abbeel

University of California, Berkeley

and Pieter.

UC Berkeley. All C518

Is are available at ht

Reinforcement Learning

Reinforcement Learning

State: s

The “Credit Assignment” Problem

I'm in state 43,

Reward: r Actions: a

Environment

= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function

= Basicidea:

= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

reward =0, action =2

The “Credit Assignment” Problem

The “Credit Assignment” Problem
I'm in state 43, reward =0, action =2 I'm in state 43, reward = 0, action =2
ot 39, =0, to=4 * 39, *o=0, " =4
oy .

=0, " =1

The “Credit Assignment” Problem

The “Credit Assignment” Problem

I'm in state 43, reward =0, action = 2 I'min state 43, reward =0, action =2
-) © =0t =4 R} © =0, =4
‘22, . =1 22, =1

s, =1 L1, =1

s 21, =1

The “Credit Assignment” Problem

The “Credit Assignment” Problem

I'm in state 43, reward =0, action =2 I'm in state 43, reward =0, action =2
©o ot 39, ©o= <=4 -} =4
v 22, “ 22, =1
=21, s 21, =1
to21, toat, =1
t 13, 13, =2
54, =2

The “Credit Assignment” Problem

Exploration-Exploitation tradeoff

I'm in state 43, reward =0, action = 2

-) t =0t =4
e .
<21,
<21,
<13,
" 54,
‘26,

Yippee! | got to a state with a big reward!
But which of my actions along the way
actually helped me get there??

This is the Credit Assignment problem.

= You have visited part of the state space and found a reward of 100
= is this the best you can hope for???
= Exploitation: should | stick with what | know and find a good policy w.r.t.
this knowledge?
= at risk of missing out on a better reward somewhere

= Exploration: should | look for states w/ more reward?
= at risk of wasting time & getting some negative reward

Example: Learning to Walk

Example: Learning to Walk

Initial

2 s

A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Initial
[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

The Crawler!

Finished

[Kohl and Stone, ICRA 2004]

Video of Demo Crawler Bot

Reinforcement Learning

= Still assume a Markov decision process (MDP):
A set of statessin S

Aset of actions ain A

A transition function T(s, a, s’)

A reward function R(s, a, s’) %

@

= Still looking for a policy rt(s)

= New twist: don’t know T or R
= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Ovenes

Offline (MDPs) vs. Online (RL)

Passive Reinforcement Learning

gﬂ%

Offline Solution

Online Learning

Passive Reinforcement Learning

Model-Based Learning

Simplified task: policy evaluation

= Input: a fixed policy m(s)

® You don’t know the transitions T(s,a,s’)
® You don’t know the rewards R(s,a,s’)

® Goal: learn the state values

= In this case: -
= Learner is “along for the ride”
* No choice about what actions to take
= Just execute the policy and learn from experience
= This is NOT offline planning! You actually take actions in the world.

Model-Based Learning

Example: Model-Based Learning

= Model-Based Idea:
= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
* Normalize to give an estimate of 7'(s, a, s)
= Discover each R(s, a,s’) when we experience (s, a, s')

= Step 2: Solve the learned MDP
= For example, use value iteration, as before

Input Policy 1t Observed Episodes (Training) Learned Model
Episode 1 Episode 2 T(s,a,s")

E] B, east, C, -1 B, east, C, -1
C, east, D, -1 C, east, D, -1
El. D, exit, X, +10 D, exit, x, +10
] of[o]
H

(B, east, C) = 1.00
T(C, east, D) =0.75
T(C, east, A) = 0.25

Episode 3 Episode 4 R(s,a,s")
E, north, C, -1 E, north, C, -1 | R(B, east, €) = -

1

R(C, east, D) = -1

C,east, D,-1 C, east, A -1 R(D, exit, x) = +10
D, exit, x,+10 A, exit, x,-10

Assume: y =1

Example: Expected Age

Model-Free Learning

Goal: Compute expected age of cs473 students

Known P(A)
E[A]=) Pla)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... ay]

Unknown P(A): “Model Based” Y\ /__ Unknown P(A): “Model Free”

‘\ 1N
4/ -1

Why does this Pla) = 2m(a) Why does this
work? Because 7 work? Because
eventually you)] samples appear
learn the right E[A]= Y Pla)-a ‘ with the right
model. . frequencies.

DouBLE’

b o

Direct Evaluation

Example: Direct Evaluation

Goal: Compute values for each state under 1t

Idea: Average together observed sample values

= Act according to 1t

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be

= Average those samples

= This is called direct evaluation

Input Policy Tt Observed Episodes (Training) Output Values
Episode 1 Episode 2
E] B, east, C, -1 B, east, C, -1
C, east,D,-1 C, east, D, -1
El. D, exit, x, +10 D, exit, x, +10
] of[o]
- Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C east, D,-1 C east, A, -1

Assume: p= 1 D, exit, x,+10 A, exit, x,-10

Problems with Direct Evaluation

Why Not Use Policy Evaluation?

= What's good about direct evaluation?
= It's easy to understand
= |t doesn’t require any knowledge of T, R

Output Values

= It eventually computes the correct average values,
using just sample transitions

= What's bad about it?
= It wastes information about state connections
= Each state must be learned separately
= So, it takes a long time to learn

IfB.and E both go to C
under this policy, how can
their values be different?

= Simplified Bellman updates calculate V for a fixed policy:
= Each round, replace V with a one-step-look-ahead layer over V

Vi (s)=0

Vi1 (s) « Y T(s,m(s),) R(s, m(s), ') + V()]

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

= Key question: how can we do this update to V without knowing T and R?
= In other words, how do we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

Temporal Difference Learning

= We want to improve our estimate of V by computing these averages:
Vi1 (s) = YT (s,m(s), s)[R(s, 7(s),8") + Vi ()]

E
= |dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,7(s),s1) + vV (sh) i .
sampley = R(s,7(s), s5) + YV (sh) ‘)f | ~
samplen = R(s,7(s), s},) + YV (sh)
VT, E 1 7
T1(s) < . > sample;
i

= Bigidea: learn from every experience! s
= Update V(s) each time we experience a transition (s, a, s’, r) ()
= Likely outcomes s’ will contribute updates more often
s, (s)
= Temporal difference learning of values
= Policy still fixed, still doing evaluation! M
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s") + V™ (s")
UpdatetoV(s): V7 (s) (1 — a)V™(s) + (a)sample

sameupdate: V7(s) « V7(s) + a(sample — V7 (s))

Exponential Moving Average

Example: Temporal Difference Learning

= Exponential moving average
= The running interpolation update: Zn = (1 — @) - Zp 1 + @ - 2y

* Makes recent samples more important:

_apt(l—a)-zp g+ (1—a)?-a
I+(1-a)+(1-a)?+...

2+...

= Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate (alpha) can give converging averages

States Observed Transitions

[B, east, C, -2] [C, east, D, -2]

Assume:y=1,a=1/2

Problems with TD Value Learning

Active Reinforcement Learning

= TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

= However, if we want to turn values into a (new) policy, we’re sunk:
7(s) = argmax Q(s,a)
a

Q(s,0) =Y T(s,a,8") \n(, a,s") +V(s")

= |dea: learn Q-values, not values

= Makes action selection model-free too!

Active Reinforcement Learning

Detour: Q-Value Iteration

= Full reinforcement learning: optimal policies (like value iteration)
® You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
* You choose the actions now
= Goal: learn the optimal policy / values

In this case:
= Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world and
find out what happens...

= Value iteration: find successive (depth-limited) values
= Start with V,(s) = 0, which we know is right
* Given V,, calculate the depth k+1 values for all states:

Vig1(s) « max 3 T(s,a,5) [R(s. a,8') + v l"},,(s’)]

= But Q-values are more useful, so compute them instead
= Start with Qy(s,a) = 0, which we know is right
= Given Q, calculate the depth k+1 g-values for all g-states:

Qryr(s,0) « Y T(s,a,5) [n(s.u.s') + Max Qu(s')

Q-Learning

Q-Learning

= Q-Learning: sample-based Q-value iteration

Quy1(s:0) « Y T(s,a,5) [R(s.u.)44 me/sz‘.(s’.u’)}

= Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)

= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a, ') + 7 maxQ(s',a)
® Incorporate the new estimate into a running average:

Q(s,a) — (1 - a)Q(s.a) + (a) [sample]

= Foralls, a
= Initialize Q(s, a) =0
= Repeat Forever
Where are you? s
Choose some action a
Execute it in real world: (s, a, 1,)
Do update:

Q(s,a) — (1 —a)Q(s,a) + () [r+~ mﬂa,xQ(s/. a')

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

Two main reinforcement learning approaches

= Amazing result: Q-learning converges to optimal policy -- even
if you're acting suboptimally!

= This is called off-policy learning

= Caveats:
® You have to explore enough
* You have to eventually make the learning rate
small enough f—
= ... but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)

= Model-based approaches:

explore environment & learn model, T=P(s’|s,a) and R(s,a), (almost) everywhere
use model to plan policy, MDP-style

approach leads to strongest theoretical results

often works well when state-space is manageable

= Model-free approach:

don’t learn a model; learn value function or policy directly

= weaker theoretical results
= often works better when state space is large

The Story So Far: MDPs and RL

Two main reinforcement learning approaches

Known MDP: Offline Solution

Goal Technique
Compute V¥, Q*, * Value / policy iteration

Evaluate a fixed policy 1t Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique Goal Technique

Compute V¥, Q%, n* VI/PI on approx. MDP Compute V¥, Q%, * Qlearning

Evaluate afixed policyn PE on approx. MDP Evaluate afixed policyn Value Learning

= Model-based approaches:
Learn T+R
|S|2|A] + S| |A| parameters (40,400)

= Model-free approach:
Learn Q
|SI|A| parameters (400)

Video of Demo Q-Learning Auto Cliff Grid

