Solving MDPs

Optimal Quantities

= Value Iteration

= Policy Iteration

= Reinforcement Learning

= The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

= The value (utility) of a g-state (s,a):
Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

= The optimal policy:
1U'(s) = optimal action from state s
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Values of States

Racing Search Tree

Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

Recursive definition of value:

V*(s) = max Q*(s,a)

Q*(s,a) =Y T(s,a,8) [R(s.a,8") +yV*(s")

V¥(s) = max 3 T(s,a,5") Pf(s. a,s') + 7 \'*(.,-’)"




Racing Search Tree

Time-Limited Values

We’re doing way too much
work with expectimax!

Problem: States are repeated
= Idea: Only compute needed

= Idea: Do a depth-limited

computation, but with increasing 1y H
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= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it's what a depth-k expectimax would give from s

Computing Time-Limited Values

Value Iteration

The Bellman Equations

The Bellman Equations

= Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship
amongst optimal utility values s

VH(s) = max Q*(s,a)

Q*(s,0) =Y T(s,a,5") [n<~.u.~’) +~\"(J):

Vi(s) = m”axZT(s.a,s’) [R(s.a,s’) + ’y\/*(s’)}

= These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over




Value Iteration

Value Iteration Algorithm

= Bellman equations characterize the optimal values:

V*(s) = max 3" T(s,a,s) [n(.m. s) 47 \'*(.,-’):

= Value iteration computes them:

Start with V(s) = 0:

Given vector of V,(s) values, do one ply of expectimax from each state:
Vieals)

Vig1(s) = max 3 T(s,a,8) [R(s,a,5") + v Vi(s))]

Repeat until convergence

Vils')
. . o N (]
Vit1(s) m{?xz T(s,a,s") [R(s.n..s )+ Vi(s )]
s = Complexity of each iteration: O(S?A)
o . = Number of iterations: poly(|S|, |A|, 1/(1-g))
= Value iteration is just a fixed point solution method ! !
= ... though the V, vectors are also interpretable as time-limited values » Theorem: will converge to unique optimal values
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Computing Actions from Values

= How do we know the V, vectors will converge?

Vi(s)

= Case 1: If the tree has maximum depth M, then
V), holds the actual untruncated values

Case 2: If the discount is less than 1

Sketch: For any state V, and V,,, can be viewed as
depth k+1 expectimax results in nearly identical
search trees

The max difference happens if big reward at k+1 level
That last layer is at best all Ry,

But everything is discounted by y* that far out

So V, and V,,, are at most y* max|R| different

So as k increases, the values converge

Viet1(s)

\ /[

Let’s imagine we have the optimal values V*(s)

How should we act?
= It's not obvious!

We need to do a mini-expectimax (one step)

m(s) = argznaxZT(s.m SHR(s,a,s") +~V*(s)]

This is called policy extraction, since it gets the policy implied by the values




Computing Actions from Q-Values

Problems with Value Iteration

= Let’s imagine we have the optimal g-values:

= How should we act?

= Completely trivial to decide!

7*(s) = argmaxQ*(s,a)

= |mportant lesson: actions are easier to select from g-values than values!

Value iteration repeats the Bellman updates:
Vig1(s)  max Y T(s,a,8) [R(s,a,8) 4+ 7 V()]

Problem 1: It’s slow — O(S?A) per iteration

Problem 2: The “max” at each state rarely changes

Problem 3: The policy often converges long before the values

VI = Asynchronous VI

k=1

= |s it essential to back up all states in each iteration?
= No!

= States may be backed up
= many times or not at all
= in any order

= As long as no state gets starved...
= convergence properties still hold!!
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Asynch VI: Prioritized Sweeping

= Why backup a state if values of successors same?
= prefer backing a state
= whose successors had most change

= Priority Queue of (state, expected change in value)
= Backup in the order of priority
= After backing a state update priority queue

= for all predecessors




