

Value Iteration

Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

• Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Value iteration is just a fixed point solution method
 ... though the V_k vectors are also interpretable as time-limited values

Value Iteration Algorithm

- Start with V₀(s) = 0:
- \blacksquare Given vector of $\boldsymbol{V}_k(\boldsymbol{s})$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Complexity of each iteration: O(S²A)
- Number of iterations: poly(|S|, |A|, 1/(1-g))
- Theorem: will converge to unique optimal values

Computing Actions from Q-Values • Let's imagine we have the optimal q-values: • How should we act? • Completely trivial to decide! $\pi^*(s) = \arg\max_a Q^*(s,a)$ • Important lesson: actions are easier to select from q-values than values!

Asynch VI: Prioritized Sweeping

- Why backup a state if values of successors same?
- Prefer backing a state
 - whose successors had most change
- Priority Queue of (state, expected change in value)
- Backup in the order of priority
- After backing a state update priority queue
 - for all predecessors