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Non-Deterministic Search

Example: Grid World

Grid World Actions

* A maze-like problem
* The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned
= 80% of the time, the action North takes the agent North

(if there is no wall there)

10% of the time, North takes the agent West; 10% East

If there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

= Goal: maximize sum of rewards

Deterministic Grid World Stochastic Grid World
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Markov Decision Processes

Markov Decision Processes

= An MDP is defined by:
= Asetofstatessin$
® AsetofactionsainA
= Atransition function T(s, a, s’)
= Probability that a from s leads to &', i.e., P(s'| s, a)
* Also called the model or the dynamics
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T(s3y N, sy4) =

Tis a Big Table!
11 X4 x 11 =484 entries

Tlssy, N, 5y,

Tsssu N: Sazi
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Sz N, Sgq For now, we give this as input to the agent

An MDP is defined by:
= AsetofstatessinS
= Asetofactionsain A
= Atransition function T(s, a, s')
* Probability that a from s leads to &', i.e., P(s'| s, a)
* Also called the model or the dynamics
= Areward function R(s, a, ')

R(s3 N, 53) = -0.01
R(S5, N, 54) = -1.01
R(ss3, E S43) = 0.99

Cost of breathing
Ris also a Big Table!

For now, we also give this to the agent




Markov Decision Processes

Markov Decision Processes

An MDP is defined by:

* Asetofstatessin$

* AsetofactionsainA

= Atransition function T(s, a, s')

= Probability that a from s leads to ', i.e., P(s'| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)

= Sometimes just R(s) or R(s')

R(s35) = -0.01

R(s,,) = -1.01
R(s,5) = 0.99

An MDP is defined by:
= AsetofstatessinS
= Asetofactionsain A
= Atransition function T(s, a, s')
= Probability that a from s leads to s', i.e., P(s'| s, a)
= Also called the model or the dynamics
* Areward function R(s, a, s')
= Sometimes just R(s) or R(s’)
= Astart state
= Maybe a terminal state

MDPs are non-deterministic search problems
® One way to solve them is with expectimax search
= We'll have a new tool soon

[Demo -~ gridworld manual intro (L8D1)]

What is Markov about MDPs?

Policies

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(Si11 =58 = s, Ar = a1, S1—1 = 511, Ar—1, ... So = s0)

Andrey Markov
(1856-1922)

P(St41 = S,|51 = s, Av = ar)

= This is just like search, where the successor function could only
depend on the current state (not the history)

= In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

= For MDPs, we want an optimal policy n*: S - A
* A policy ntgives an action for each state
= An optimal policy is one that maximizes

expected utility if followed

An explicit policy defines a reflex agent

= Expectimax didn’t compute entire policies
= It computed the action for a single state only

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Optimal Policies

Example: Racing

R(s) =-0.03
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R(s) =-0.01

R(s)=-0.4 R(s) =-2.0




Example: Racing

Racing Search Tree

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward

Slow

+1 Overheated

MDP Search Trees

Utilities of Sequences

= Each MDP state projects an expectimax-like search tree

(s,2,5") called a transition

T(sa,s") =P(s" |s,a)
N/

R(sa,s’) v\

Utilities of Sequences

Discounting

= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3,4]
= Noworlater? [0,0,1] or [1,0,0] @

&
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= |t's reasonable to maximize the sum of rewards
= |t's also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

v 9 &

1 v 72

Worth Now Worth Next Step Worth In Two Steps




Discounting

Stationary Preferences

= How to discount?
= Each time we descend a level, we

N/
multiply in the discount once v\ 1

= Why discount?
= Sooner rewards probably do have

e
higher utility than later rewards v 'y

= Also helps our algorithms converge

= Example: discount of 0.5

®= U([1,2,3]) =1*1+0.5*2 + 0.25*3 ,_\/2
= U(11,23) < U(B,2,1]) d&:“ !

= Theorem: if we assume stationary preferences: %/,;.
X

Y
[a1,a2,...] = [b1,ba, .. ] g8 @
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[rya1,a,...] = [r,b1,b,.. ]

= Then: there are only two ways to define utilities
= Additive utility: ~ U([rg,r1,72,...]) =r0+7r1+7104+ -

= Discounted utility: U([rg,r1,72,...]) =70+ yr1 + V2rg e

Quiz: Discounting

Infinite Utilities?!

= Given:

a b ¢ d e
= Actions: East, West, and Exit (only available in exit states a, e)
= Transitions: deterministic

= Quiz 1: Fory = 1, what is the optimal policy? ----
= Quiz 2: Fory = 0.1, what is the optimal policy? ----

Quiz 3: For which y are West and East equally good when in state d?

= Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:
= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (y depends on time left)
= Discounting:use0<y<1

oo

U(lro,-- 7o) = 3 4're < Rmax/(1 =)
t=0
= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

= Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount y)

= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards




