Problem Structure
= Tasmania and mainland are
independent subproblems @
= |dentifiable as connected

s

components of constraint

M

= Suppose each subproblem
has c variables out of n total

ef@

= Worst-case solution cost is
O((n/c)(d®)), linear in n

*Eg,n=80,d=2,¢c=20

= 280 = 4 billion years at 10 million
nodes/sec

= (4)(220) = 0.4 seconds at 10
million nodes/sec

©

4/12/15

Tree-Structured CSPs

= Choose a variable as root, order o G
variables from root to leaves such e e

that every node's parent precedes

it in the ordering
= Fori=n: 2, apply Removelnconsistent(Parent(X;),X)
= Fori=1:n, assign X, consistently with Parent(X)

= Runtime: O(n d?)

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:

= Order: Choose a root variable, order variables so that parent
precede children

() (E)

> A
B
= m m
¢ j ® 0 0 &
t R E &

= Remove backward:
Fori=n: 2, apply Removelnconsistent(Parent(X;), X))

= Assign forward:
Fori=1:n, assign X; consistently with Parent(X;)

* Runtime: O(n d?) (why?)

Nearly Tree-Structured CSPs

®

& o= e@
G o
o o

= Conditioning: instantiate a variable, prune its neighbors' domains

= Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

= Cutset size ¢ gives runtime O((d°) (n-c) d2), very fast for small ¢

Cutset Conditioning

Choose a cutset
Instantiate the cutset (all
possible ways) @

s
o/

/

TR e %
e@ o -
! S ‘@
Compute residual CSP l © l © l <
for each assignment
O O—¢ O—G
Solve the residual CSPs @ ® ®
(tree structured) <) S) (=)
O O} g

Iterative Algorithms for CSPs

= Greedy and local methods typically work with “complete”
states, i.e., all variables assigned

= To apply to CSPs:
= Allow states with unsatisfied constraints
= Operators reassign variable values

= Variable selection: randomly select any conflicted variable

= Value selection by min-conflicts heuristic:
= Choose value that violates the fewest constraints
= |.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

2=

States: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

4/12/15

Performance of Min-Conflicts

= Given random initial state, can solve n-queens in almost constant time
for arbitrary n with high probability (e.g., n = 10,000,000)

= The same appears to be true for any randomly-generated CSP except
in a narrow range of the ratio

R= number of constraints
number of variables

CPU|
time

critical
ratio

Summary

CSPs are a special kind of search problem:
= States defined by values of a fixed set of variables
= Goal test defined by constraints on variable values

Backtracking = depth-first search with one legal variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

The constraint graph representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice

Local Search

Local Search

Tree search keeps unexplored alternatives on the fringe
(ensures completeness)

Local search: improve a single option until you can’'t make
it better (no fringe!)

New successor function: local changes

()

cese

Generally much faster and more memory efficient (but
incomplete and suboptimal)

Hill Climbing

= Simple, general idea:
= Start wherever

= Repeat: move to the best neighboring
state

= If no neighbors better than current,

= What's bad about this approac!

= Complete? _
= Optimal?
~
= What's good about it? - >

e

Hill Climbing Diagram

4/12/15

objective function lobal maximum

shoulder
local maximum
"flat" local maximum

tate space

current
state

Hill Climbing

Objective Function

State Space

X A B cYy D E z
Starting from X, where do you end up ?
Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing

= |dea: Escape local maxima by allowing downhill moves
= But make them rarer as time goes on

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
nexl, a node
T, a "temperature” controlling prob. of downward steps

current — MAKE-NODE(INITIAL-STATE[problem])
for t— 1to oc do

T schedule[{]
if T'= 0 then return current
next— a randomly selected successor of current

AE+— VALUE[next] - VALUE[current]
if AE > 0 then current < next

else current— next only with probability e £/

Simulated Annealing

= Theoretical guarantee:
= Stationary distribution:

E(x)
p(e) x e BT

= If T decreased slowly enough,
will converge to optimal state!

= |s this an interesting guarantee?

= Sounds like magic, but reality is reality:
= The more downhill steps you need to escape a local
optimum, the less likely you are to ever make them all
in a row
= People think hard about ridge operators which let you
jump around the space in better ways

Genetic Algorithms

[24748552] 24 stu [32752411 [32748552 | 327442 |

(2752411 B a0~ [2a7a8552 24752811 |—{ 24752411
|z44151z4%[32752411 32752124

[32543213] 11 ww~[2aangioa) [24415801 | 2441541

Fitness Selection ~ Pairs Cross-Over

Genetic algorithms use a natural selection metaphor
= Keep best N hypotheses at each step (selection) based on a fitness function
= Also have pairwise crossover operators, with optional mutation to give variety

Possibly the most misunderstood, misapplied (and even maligned)
technique around

Example: N-Queens

= Why does crossover make sense here?
= When wouldn’t it make sense?

= What would mutation be?

= What would a good fitness function be?

GA'’s for Locomotion

Ever wonder what it would be like
to see evolution happening
right before your eyes?

Hod Lipson’s Creative Machines Lab @ Cornell

4/12/15

