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Problem Structure 
§  Tasmania and mainland are 

independent subproblems 
§  Identifiable as connected 

components of constraint 
graph 

§  Suppose each subproblem 
has c variables out of n total 

§  Worst-case solution cost is 
O((n/c)(dc)), linear in n 
§  E.g., n = 80, d = 2, c =20 

§  280 = 4 billion years at 10 million 
nodes/sec 

§  (4)(220) = 0.4 seconds at 10 
million nodes/sec 

Tree-Structured CSPs 
§  Choose a variable as root, order 

 variables from root to leaves such 
 that every node's parent precedes 

 it in the ordering  
§  For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi) 
§  For i = 1 : n, assign Xi consistently with Parent(Xi) 

§  Runtime: O(n d2) 

§  Algorithm for tree-structured CSPs: 
§  Order: Choose a root variable, order variables so that parents 

precede children 

§  Remove backward:  
For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi) 

§  Assign forward:  
For i = 1 : n, assign Xi consistently with Parent(Xi) 

§  Runtime: O(n d2)  (why?) 

Tree-Structured CSPs Nearly Tree-Structured CSPs 

§ Conditioning: instantiate a variable, prune its neighbors' domains 
§ Cutset conditioning: instantiate (in all ways) a set of variables 

such that the remaining constraint graph is a tree 
§ Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c 

Cutset Conditioning 

SA	  

SA	   SA	   SA	  

Instan.ate	  the	  cutset	  (all	  
possible	  ways)	  

Compute	  residual	  CSP	  
for	  each	  assignment	  

Solve	  the	  residual	  CSPs	  
(tree	  structured)	  

Choose	  a	  cutset	  

Iterative Algorithms for CSPs 
§  Greedy and local methods typically work with “complete” 

states, i.e., all variables assigned 

§  To apply to CSPs: 
§  Allow states with unsatisfied constraints 
§ Operators reassign variable values 

§  Variable selection: randomly select any conflicted variable 

§  Value selection by min-conflicts heuristic: 
§  Choose value that violates the fewest constraints 
§  I.e., hill climb with h(n) = total number of violated constraints 
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Example: 4-Queens 

§  States: 4 queens in 4 columns (44 = 256 states) 
§  Operators: move queen in column 
§  Goal test: no attacks 
§  Evaluation: h(n) = number of attacks 

Performance of Min-Conflicts 
§  Given random initial state, can solve n-queens in almost constant time 

for arbitrary n with high probability (e.g., n = 10,000,000) 

§  The same appears to be true for any randomly-generated CSP except 
in a narrow range of the ratio 

Summary 
§  CSPs are a special kind of search problem: 

§  States defined by values of a fixed set of variables 
§  Goal test defined by constraints on variable values 

§  Backtracking = depth-first search with one legal variable assigned per node 

§  Variable ordering and value selection heuristics help significantly 

§  Forward checking prevents assignments that guarantee later failure 

§  Constraint propagation (e.g., arc consistency) does additional work to 
constrain values and detect inconsistencies 

§  The constraint graph representation allows analysis of problem structure 

§  Tree-structured CSPs can be solved in linear time 

§  Iterative min-conflicts is usually effective in practice 

Local Search 

Local Search 
§  Tree search keeps unexplored alternatives on the fringe 

(ensures completeness) 

§  Local search: improve a single option until you can’t make 
it better (no fringe!) 

§  New successor function: local changes 

§  Generally much faster and more memory efficient (but 
incomplete and suboptimal) 

Hill Climbing 
§  Simple, general idea: 

§  Start wherever 
§  Repeat: move to the best neighboring 

state 
§  If no neighbors better than current, quit 

§  What’s bad about this approach? 
§  Complete? 
§  Optimal? 

§  What’s good about it? 
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Hill Climbing Diagram Hill Climbing 

Star.ng	  from	  X,	  where	  do	  you	  end	  up	  ?	  
	  	  

Star.ng	  from	  Y,	  where	  do	  you	  end	  up	  ?	  
	  
Star.ng	  from	  Z,	  where	  do	  you	  end	  up	  ?	  

Simulated Annealing 
§  Idea:  Escape local maxima by allowing downhill moves 

§  But make them rarer as time goes on 

55 

Simulated Annealing 
§  Theoretical guarantee: 

§  Stationary distribution: 

§  If T decreased slowly enough, 
 will converge to optimal state! 

§  Is this an interesting guarantee? 

§  Sounds like magic, but reality is reality: 
§  The more downhill steps you need to escape a local 

optimum, the less likely you are to ever make them all 
in a row 

§  People think hard about ridge operators which let you 
jump around the space in better ways 

Genetic Algorithms 

§  Genetic algorithms use a natural selection metaphor 
§  Keep best N hypotheses at each step (selection) based on a fitness function 
§  Also have pairwise crossover operators, with optional mutation to give variety 

§  Possibly the most misunderstood, misapplied (and even maligned) 
technique around 

Example: N-Queens 

§  Why does crossover make sense here? 
§  When wouldn’t it make sense? 
§  What would mutation be? 
§  What would a good fitness function be? 
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GA’s for Locomotion 

Hod Lipson’s Creative Machines Lab @ Cornell 


