
Maxim Likhachev 1 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Motion/Path Planning 
Examples (of what is usually referred to as path planning): 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Motion/Path Planning 
Examples (of what is usually referred to as motion planning): 

Planned motion for a 6DOF robot arm 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Motion/Path Planning 

Path/Motion Planner 

Controller 

path 

commands 

pose update map update 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Planning via Cell Decomposition 
•  Approximate Cell Decomposition: 

- overlay uniform grid over the C-space (discretize) 

discretize 

planning map 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Planning via Cell Decomposition 
•  Approximate Cell Decomposition: 

- construct a graph and search it for a least-cost path 

discretize 

planning map 
S1 S2 S3 

S4 S5 

S6 

S1 S2 S3 

S4 S5 

S6 

convert into a graph search the graph  
for a least-cost path  
from sstart to sgoal 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Planning via Cell Decomposition 
•  Approximate Cell Decomposition: 

- construct a graph and search it for a least-cost path 

discretize 

planning map 
S1 S2 S3 

S4 S5 

S6 

S1 S2 S3 

S4 S5 

S6 

convert into a graph search the graph  
for a least-cost path  
from sstart to sgoal 

eight-connected grid 
(one way to construct a graph) 



Maxim Likhachev 2 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Planning via Cell Decomposition 
•  Graph construction: 

- lattice graph 

action template 

replicate it  
online 

each transition is feasible 
(constructed beforehand) 

outcome state is the center of the corresponding cell 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Planning via Cell Decomposition 
•  Graph construction: 

- lattice graph 
- pros: sparse graph, feasible paths 
- cons: possible incompleteness 

action template 

replicate it  
online 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Example 

Urban Challenge Race, CMU team, planning with Anytime D* 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Effect of the Heuristic Function 

sgoal 
sstart 

… … 

•  A* Search: expands states in the order of f = g+h values 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Effect of the Heuristic Function 

sgoal 
sstart 

… … 

•  A* Search: expands states in the order of f = g+h values 

for large problems this results in A* quickly  
running out of memory (memory: O(n)) 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Effect of the Heuristic Function 

•  Weighted A* Search: expands states in the order of f = g
+εh values, ε > 1 = bias towards states that are closer to 
goal 

sstart sgoal 
… 

… 

solution is always ε-suboptimal: 
cost(solution) ≤ ε·cost(optimal solution) 



Maxim Likhachev 3 

Anytime Aspects 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Heuristics 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Heuristic Function 

•  Weighted A* Search: expands states in the order of f = g+εh 
values, ε > 1 = bias towards states that are closer to goal 

 20DOF simulated robotic arm 
state-space size: over 1026 states  

 planning with ARA* (anytime version of weighted A*) 
Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Effect of the Heuristic Function 

•  planning in 8D (<x,y> for each foothold) 
•  heuristic is Euclidean distance from the center of the body to the goal location 
•  cost of edges based on kinematic stability of the robot and quality of footholds 

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza 

 planning with R* (randomized version of weighted A*) 

Planning in Robotics: Courtesy of Maxim Likhachev, CMU 

Incremental version of A* (D*/D* Lite) 

ATRV navigating  
initially-unknown environment planning map and path 

•  Robot needs to re-plan whenever 
–  new information arrives (partially-known environments or/and 

dynamic environments) 
–  robot deviates off its path 


