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Motion/Path Planning 
Examples (of what is usually referred to as path planning): 
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Motion/Path Planning 
Examples (of what is usually referred to as motion planning): 

Planned motion for a 6DOF robot arm 
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Motion/Path Planning 

Path/Motion Planner 

Controller 

path 

commands 

pose update map update 
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Planning via Cell Decomposition 
•  Approximate Cell Decomposition: 

- overlay uniform grid over the C-space (discretize) 

discretize 

planning map 
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Planning via Cell Decomposition 
•  Approximate Cell Decomposition: 

- construct a graph and search it for a least-cost path 

discretize 

planning map 
S1 S2 S3 

S4 S5 

S6 

S1 S2 S3 

S4 S5 

S6 

convert into a graph search the graph  
for a least-cost path  
from sstart to sgoal 
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Planning via Cell Decomposition 
•  Approximate Cell Decomposition: 

- construct a graph and search it for a least-cost path 

discretize 

planning map 
S1 S2 S3 

S4 S5 

S6 

S1 S2 S3 

S4 S5 

S6 

convert into a graph search the graph  
for a least-cost path  
from sstart to sgoal 

eight-connected grid 
(one way to construct a graph) 
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Planning via Cell Decomposition 
•  Graph construction: 

- lattice graph 

action template 

replicate it  
online 

each transition is feasible 
(constructed beforehand) 

outcome state is the center of the corresponding cell 
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Planning via Cell Decomposition 
•  Graph construction: 

- lattice graph 
- pros: sparse graph, feasible paths 
- cons: possible incompleteness 

action template 

replicate it  
online 
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Example 

Urban Challenge Race, CMU team, planning with Anytime D* 
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Effect of the Heuristic Function 

sgoal 
sstart 

… … 

•  A* Search: expands states in the order of f = g+h values 
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Effect of the Heuristic Function 

sgoal 
sstart 

… … 

•  A* Search: expands states in the order of f = g+h values 

for large problems this results in A* quickly  
running out of memory (memory: O(n)) 
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Effect of the Heuristic Function 

•  Weighted A* Search: expands states in the order of f = g
+εh values, ε > 1 = bias towards states that are closer to 
goal 

sstart sgoal 
… 

… 

solution is always ε-suboptimal: 
cost(solution) ≤ ε·cost(optimal solution) 
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Anytime Aspects 
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Heuristics 
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Heuristic Function 

•  Weighted A* Search: expands states in the order of f = g+εh 
values, ε > 1 = bias towards states that are closer to goal 

 20DOF simulated robotic arm 
state-space size: over 1026 states  

 planning with ARA* (anytime version of weighted A*) 
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Effect of the Heuristic Function 

•  planning in 8D (<x,y> for each foothold) 
•  heuristic is Euclidean distance from the center of the body to the goal location 
•  cost of edges based on kinematic stability of the robot and quality of footholds 

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza 

 planning with R* (randomized version of weighted A*) 
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Incremental version of A* (D*/D* Lite) 

ATRV navigating  
initially-unknown environment planning map and path 

•  Robot needs to re-plan whenever 
–  new information arrives (partially-known environments or/and 

dynamic environments) 
–  robot deviates off its path 


