Motion/Path Planning
Examples (of what is usually referred to as path planning):
gl N B i ~

Planning in Robotics: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

Path/Motion Planner
lpath
Controller
lcommands
map update pose update

Planning in Robotics: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

e @ planning map
s, |s,|s, ‘
convert into a graph [T search the graph
S, | s, YEITTOAETEPT @& for a least-cost path
S from s, 10 Sgou

Motion/Path Planning
Examples (of what is usually referred to as motion planning):

Planned motion for a 6DOF robot arm

Planning in Robotics: Courtesy of Maxim Likhacheyv, CMU

Planning via Cell Decomposition

* Approximate Cell Decomposition:
- overlay uniform grid over the C-space (discretize)

discretize

planning map

Planning in Robotics: Courtesy of Maxim Likhachev, CMU

Planning in Robotics: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

eight-connected grid
(one way to construct a graph) '

planning map
S |S; | S

e
"= convert into a graph ‘@.€ search the graph

Sy | Ss for a least-cost path

from s, 10 501

Ss

Planning in Robotics: Courtesy of Maxim Likhachey, CMU

Maxim Likhachev

Planning via Cell Decomposition
* Graph construction:
- lattice graph

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

action femplate

& % S

. . Clsy59 =8
“ replicate it
T S i

online

HD s,
C(s,,5,) = 100
Cls,59 =5

Planning in Robotics: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
* Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness ‘%ﬁ ool

action template

&2 % Se =
C(s1,5)=5

. ., C(s4,85) = 5! 4
= replicateit "™ b R
- : :
online \ =, Js,
4 o

& W

Planning in Robotics: Courtesy of Maxim Likhacheyv, CMU

Example

Urban Challenge Race, CMU team, planning with Anytime D*

Planning in Robotics: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

» A* Search: expands states in the order of /' = g+/ values

start
S, goal

Planning in Robotics: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

» A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly
running out of memory (memory: O(n))

sgoal

Planning in Robotics: Courtesy of Maxim Likhachev, CMU

Maxim Likhachev

Effect of the Heuristic Function

» Weighted A* Search: expands states in the order of =g
+eh values, ¢ > 1 = bias towards states that are closer to
goal

Tuti o

is always e-suboptii
cost(solution) < e-cost(optimal solution)

goal

Planning in Robotics: Courtesy of Maxim Likhachey, CMU

Anytime Aspects Heuristics
cost = 133,736
£=3.0
13,000 # expands = 1,715
11,000
k7 cost = 77,345
8 £=1.0)
expands = 14,132 .. .
9,000 heuristic states time
; expanded (secs)
7000 h 2019 0.06
0 02 04 06 hap 26,108 1.30
time (secs) hesn 124,794 3.49
Planning in Robotics: Courtesy of Maxim Likhachev, CMU Planning in Robotics: Courtesy of Maxim Likhacheyv, CMU
Heuristic Function Effect of the Heuristic Function
» Weighted A* Search: expands states in the order of f = g+¢h * planning in 8D (<x,> for each foothold)
1 >] = bias t ds states that 1 ¢ 1 * heuristic is Euclidean distance from the center of the body to the goal location
values, & = bias towards siates that are closer to goa « cost of edges based on kinematic stability of the robot and quality of footholds

20DOF simulated robotic arm
state-space size: over 10%° states

_ planning with R* (randomized version of weighted A¥)
Jjoint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

planning with ARA* (anytime version of weighted A*)

Planning in Robotics: Courtesy of Maxim Likhachev, CMU

Planning in Robotics: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new information arrives (partially-known environments or/and
dynamic environments)

— robot deviates off its path

ATRV navigating
initially-unknown environment planning map and path

Planning in Robotics: Courtesy of Maxim Likhachev, CMU

Maxim Likhachev

