CE 473: Artificial Intelligence

Spring 2015

A* Search

Dieter Fox
Based on slides from Pieter Abbeel & Dan Klein
Multiple slides from Stuart Russell, Andrew Moore, Luke Zettlemoyer

Today

= A* Search
= Heuristic Design

= Graph search

Recap: Search

= Search problem:
= States (configurations of the world)

= Successor function: a function from states to
lists of (state, action, cost) triples; drawn as a graph

= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search Algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)

Example: Pancake Problem

Action: Flip over the
top n pancakes

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(c) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(c)
for all o in (the symmetric group) S,,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, cach integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n+3.

Example: Pancake Problem

State space graph with costs as weights

4/7/15

General Tree Search

function TRER-SEARCH{ problem, strutegy) returns a solution, o falure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end
{ Path to reach goal:
Flip four, flip three

Z\ Total cost: 7

Action: flip top
two

N:
|
Ji-I

~

I/
[N
i<

Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

What is a Heuristic?

= An estimate of how close a state is to a goal
= Designed for a particular search problem

= Examples: Manhattan distance: 10+5 = 15
Euclidean distance: 11.2

Glurgiu
Hirsova
Tast
Lugoj
Mehadia

Neamt

Oradea

Pitesti 98
Rimnicu Vileea 19
Sibiu 2.
Timisoara

[Lugo)
7
Mohadia

Dobreta [}

o Giurgiu

Greedy Search

Best First (Greedy)

= Strategy: expand a node
that you think is closest to
a goal state
= Heuristic: estimate of
distance to nearest goal for
each state

= A common case:

= Best-first takes you straight
to the (wrong) goal

= Worst-case: like a badly-
guided DFS

4/7/15

Greedy Search

s

. Expand the node that seems=l
closest..

Arad

Sbiu

329

386 380 193
0

25

= What can go wrong?

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Is A* Optimal?

o8 .

= What went wrong?
= Actual bad goal cost < estimated good path cost

= We need estimates to be less than or equal to
actual costs!

A* Search

When should A* terminate?

= Should we stop when we enqueue a goal?

= No: only stop when we dequeue a goal

Admissible Heuristics

= A heuristic & is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

= Examples:
R

= Coming up with admissible heuristics is most of
what'’s involved in using A* in practice.

4/7/15

Optimality of A* Tree Search

Assume:

= Ais an optimal goal node

= Bisa suboptimal goal node
= hisadmissible

Claim: B

= A will exit the fringe before B

Optimality of A* Tree Search

Proof:

= |magine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe A!)

= Claim: n will be expanded 0
before B QB
1. f(n)is less or equal to f(A)

f(n) =g(n) +h(n) Definition of f-cost
f(n) <g(4) Admissibility of h
g(A) = f(4) h=0atagoal

Optimality of A* Tree Search

p

roof:
Imagine B is on the fringe

Some ancestor n of A is on the n
fringe, too (maybe A!)

Claim: n will be expanded ¢
before B ~ Q

1. f(n)is less or equal to f(A)

2. f(A) is less than f(B)
9(4) <g(B)
J(A) < f(B)

B is suboptimal

S

h=0atagoal

Optimality of A* Tree Search

Proof:
= |magine B is on the fringe
= Some ancestor n of Ais on the v

fringe, too (maybe Al)

= Claim: n will be expanded
before B
1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)
3. nexpands before B

= All ancestors of A expand
before B

= A expands before B
= _A* search is optimal

UCS vs A* Contours

= Uniform-cost expanded
in all directions

Goal

= A* expands mainly
toward the goal, but
hedges its bets to
ensure optimality

Which Algorithm?

= Uniform cost search (UCS):

4/7/15

Which Algorithm?

= A* Manhattan Heuristic:

Which Algorithm?

= Best First / Greedy, Manhattan Heuristic:

Creating Admissible Heuristics

= Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

= QOften, admissible heuristics are solutions to relaxed
problems, where new actions are available

Inadmissible heuristics are often useful too

Creating Heuristics

8-puzzle:

Start State
What are the states?
= How many states?
What are the actions?

Goal State

= What states can | reach from the start state?

What should the costs be?

8 Puzzle |

= Heuristic: Number of
tiles misplaced

= h(start)= 8

= |s it admissible?

Han L]

N GRS

OB0maiEan

Start State Goal State

Average nodes expanded when
optimal path has length...

...4 steps | ...8 steps | ...12 steps

UCS

112 6,300 |3.6x10°

TILES

13 39 227

8 Puzzle Il

= What if we had an easier 8-
puzzle where any tile could
slide any direction at any
time, ignoring other tiles?

= Total Manhattan distance

o

5

GG Lo

= h(start)= 3+1+2+ ...

Start State Goal State

=18 Average nodes expanded when
optimal path has length...
...4 steps |...8 steps |...12 steps
L TILES 13 39 227
= Admissible?
MANHATTAN | 12 25 73

4/7/15

8 Puzzle Il

= How about using the actual cost as a
heuristic?
= Would it be admissible?
= Would we save on nodes expanded?

= What's wrong with it?
= With A*: a trade-off between quality of
estimate and work per node!

Trivial Heuristics, Dominance

= Dominance: h, = h, if
exact
Vn : ha(n) > he(n) 1
maz(ha, hy)
= Heuristics form a semi-lattice:
= Max of admissible heuristics is admissible ha hb

h(n) = maz(ha(n), hy(n)) | /
he

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)
= Top of lattice is the exact heuristic

A* Applications

= Pathing / routing problems

= Resource planning problems
= Robot motion planning

= Language analysis

= Machine translation

= Speech recognition

Tree Search: Extra Work!

= Failure to detect repeated states can cause
exponentially more work. Why?

A 3 A @
1]

8 Ad B® 8®
1]

¢ o cg co cg co
1 A\l

o -

Graph Search

= In BFS, for example, we shouldn’t bother
expanding some nodes (which, and why?)

d e P
PN |
@ h q
& éul
a r
N ®/\
p q f qg ¢ G
I PaN !
g ¢ G a
|
a

Graph Search

= |dea: never expand a state twice

= How to implement:
= Tree search + set of expanded states (“closed set”)
Expand the search tree node-by-node, but...

Before expanding a node, check to make sure its state has never
been expanded before

If not new, skip it, if new add to closed set

Hint: in python, store the closed set as a set, not a list
= Can graph search wreck completeness? Why/why not?

= How about optimality?

4/7/15

A* Graph Search Gone Wrong

State space graph

Search tree
S (0+2)

A (1+4) B (1+1)

| |

C (2+1) C (3+1)

|

G (5+0) G (6+0)

h=0

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

= Consistency: heuristic “arc” cost < actual cost for

each arc
h(A) - h(C) < cost(A to C)
= Consequences of consistency:
= The fvalue along a path never decreases
h(A) < cost(A to C) + h(C)
f(A) = g(A) + h(A) < g(A) + cost(A to C) + h(C) = f(C)

= A*graph search is optimal

Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

Nodes are popped with non-decreasing f-
scores: for all n, n” with n” popped after n :
f(n’) 2 f(n)
= Proof by induction: (1) always pop the lowest f-
score from the fringe, (2) all new nodes have
larger (or equal) scores, (3) add them to the
fringe, (4) repeat!

For every state s, nodes that reach s
optimally are expanded before nodes that
reach s sub-optimally

Result: A* graph search is optimal

Optimality

Tree search:
= A* optimal if heuristic is admissible (and non-negative)
= UCS is a special case (h = 0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, natural admissible heuristics tend to
be consistent, especially if from relaxed problems

Summary: A*

= A* uses both backward costs and
(estimates of) forward costs

= A* is optimal with admissible / consistent
heuristics

= Heuristic design is key: often use relaxed
problems

4/7/15

