Hill Climbing

- Simple, general idea:
- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit
- What's bad about this approach?
- Complete?
- Optimal?
- What's good about it?

Simulated Annealing

- Theoretical guarantee: $\quad p(x) \propto e^{\frac{E(x)}{k T}}$
- Stationary distribution:
- If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
- The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
- People think hard about ridge operators which let you jump around the space in better ways

Example: N-Queens
- Why does crossover make sense here? - When wouldn't it make sense? - What would mutation be?

Deterministic Two-Player

- E.g. tic-tac-toe, chess, checkers
- Zero-sum games
- One player maximizes result
- The other minimizes result
- Minimax search
- A state-space search tree
- Players alternate
- Choose move to position with highest minimax value $=$ best achievable utility against best play

Minimax Implementation

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Randomness?

Utilities

Utilities: Uncertain Outcomes
Preferences

Rational Preferences

- We want some constraints on preferences before we call them rational, such as:

Axiom of Transitivity: $(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$

MEU Principle

The Axioms of Rationality

Theorem: Rational preferences imply behavior describable as maximization of expected utility

- Theorem [Ramsey, 1931; von Neumann \& Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real valued function U such that:

 valued function U such that:$$
\begin{aligned}
& U(A) \geq U(B) \Leftrightarrow A \succeq B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
\end{aligned}
$$

- l.e. values assigned by U preserve preferences of both prizes and
lotteries!
- Maximum expected utility (MEU) principle:
- Choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEU) without
ever representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

Human Utilities
Human Utilities
Playing Russian Roulette?

Playing Russian Roulette?

Playing Russian Roulette?
How much you would pay to avoid a a risk?
What value people would place on their own lives?
Perhaps tens of thousands of dollars...??
Perhaps tens of thousan
\square micromort

The actual human behavior reflects a much lower
monetary value for a micromort!!!

Utility Scales

- Normalized utilities: $u_{+}=1.0, u_{-}=0.0$
- Micromorts: one-millionth chance of death,
- QALYs: quality-adjusted life years, useful for
medicaldecisions involving substantial risk
- Note: behavior is invariant under positive linear
transformation
$U^{\prime}(x)=k_{1} U(x)+k_{2} \quad$ where $k_{1}>0$

- With deterministic prizes only (no lottery
choices) only ordinalutility can be determined,
i.e., total order on prizes

Utility of Money

- Money plays a significant rule in human utility functions
- Usually an agent prefers more money to less

Utility of Money

- Money plays a significant rule in human utility functions
- Usually an agent prefers more money to less
\square The agent exhibits a monotonic preference for more money
- Money plays a significant rule in human utility functions
- Usually an agent prefers more money to less
\rightarrow The agent exhibits a monotonic preference for more money

But!

- This does not mean that money behaves as a utility function!
- This does not say anything about preferences between lotteries involving money!

Example:

- In a television game show:
A) take $\$ 1,000,000$ prize
B) gamble on the flip of a coin:
- If heads nothing
- If tails get $\$ 2,500,000$

Which one you would take? A or B?

Example:

- In a television game show:
A) take $\$ 1,000,000$ prize
B) gamble on the flip of a coin:
- If heads nothing
- If tails get $\$ 2,500,000$
- If coin is fair, Expected Monetary Value (EMV) of gamble is: $E M V=1 / 2(\$ 0)+1 / 2(\$ 2,500,000)=\$ 1,250,000$
\rightarrow more than $\$ 1,000000$
Would you choose B?

Example:

- In a television game show:
A) take $\$ 1,000,000$ prize
B) gamble on the flip of a coin:
- If heads nothing
- If tails get $\$ 2,500,000$
- If coin is fair, Expected Monetary Value (EMV) of gamble is:

$$
E M V=1 / 2(\$ 0)+1 / 2(\$ 2,500,000)=\$ 1,250,000
$$

$E U(B)=1 / 2 U(S k)+1 / 2 U(S k+\$ 2,500,000)$
$E U(A)=U(S k+\$ 1,000,000)$

Example:

EMV = 12 (\$0) + ½ (\$2,500,000) = \$1,250,000
$E U(B)=1 / 2 U(S k)+1 / 2 U(S k+\$ 2,500,000)=7$
$\mathrm{EU}(\mathrm{A})=\mathrm{U}(\mathrm{Sk}+\$ 1,000,000)=8$
Utility is not directly proportional to monetary value
Utility(first million) is very high!
Utility(additional million) is smaller!
$\mathrm{U}(\mathrm{Sk})=5$,
$U(S k+\$ 1,000,000)=8$
$U(S k+\$ 2,500,000)=9$

Example:

EMV $=1 / 2(\$ 0)+1 / 2(\$ 2,500,000)=\$ 1,250,000$
$E U(B)=1 / 2 U(S k)+1 / 2 U(S k+\$ 2,500,000)$
$E U(A)=U(S k+\$ 1,000,000)$
Utility is not directly proportional to monetary value
Utility(first million) is very high!
Utility(additional million) is smaller!
$\mathrm{U}(\mathrm{Sk})=5$,
U(Sk + \$1,000,000) = 8
$U(S k+\$ 2,500,000)=9$

Example: Insurance

- Consider the lottery $[0.5, \$ 1000 ; 0.5$,
\$0]
What is its expected monetary value? (\$500)
- What is its certainty equivalent?
- Monetary value acceptable in lieu of
lottery $\$ 400$ for most people
- Difference of $\$ 100$ is the insurance
premium
- There's an insurance industry becaus
people will pay to reduce their risk
people will pay to reduce their risk
If everyone were risk-neutral, no insurance
needed!
- It's win-win: you'd rather have the $\$ 400$
and the insurance company would rather and the insurance company wourd rather
have the lottery (their utility curve is flat and they have many lotteries)

