CSE 473: Artificial Intelligence Particle Filtering

Particle Filters

Filtering: approximate solution
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= Sometimes |X| is too big to use exact inference
= |X| may be too big to even store B(X) 00 [ 00 | 02
= E.g.Xis continuous
= |X|2may be too big to do updates 00 | 02 | 05

Solution: approximate inference
Track samples of X, not all values v
Samples are called particles
Time per step is linear in the number of samples °
But: number needed may be large

In memory: list of particles, not states
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= This is how robot localization works in practice 0
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Particle Filtering: Observe Particle Filtering: Resample

Particles:
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Recap: Particle Filtering

Video of Demo — Moderate Number of Particles

= Particles: track samples of states rather than an explicit distribution
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[Demos: particle filtering (115034511

Video of Demo — One Particle

Video of Demo — Huge Number of Particles

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using
multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time t can condition on those from t-1

t=1 t=2

Dynamic Bayes nets are a generalization of HMMs
[Demo: pacman sonar ghost DBN model (L15D6)]




DBN Particle Filters

A particle is a complete sample for a time step

Initialize: Generate prior samples for the t=1 Bayes net
= Example particle: G;*= (3,3) G,*=(5,3)

Elapse time: Sample a successor for each particle

= Example successor: G,2=(2,3) G, = (6,3)

Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample
= Likelihood: P(E;® |G,?) * P(E," |G,?)

Resample: Select prior samples (tuples of values) in proportion to their likelihood




