

Representation: Particles	
- Our representation of $P(X)$ is now a list of N particles (samples) - Generally, N << $\|\mathrm{X}\|$ - Storing map from X to counts would defeat the point - $P(x)$ approximated by number of particles with value x - So, many x may have $P(x)=0$! - More particles, more accuracy - For now, all particles have a weight of 1	\ddots \ddots - \vdots Particles: $(3,3)$ $(2,3)$ $(3,3)$ $(3,2)$ $(3,3)$ $(3,2)$ $(1,2)$ $(3,3)$ $(3,3)$ $(2,3)$

Particle Filtering: Elapse Time			
- Each particle is moved by sampling its next position from the transition model $x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)$ - This is like prior sampling - samples' frequencies reflect the transition probabilities - Here, most samples move clockwise, but some move in another direction or stay in place - This captures the passage of time - If enough samples, close to exact values before and after (consistent)			

Particle Filtering: Observe				
- Slightly trickier: - Don't sample observation, fix it - Similar to likelihood weighting, downweight samples based on the evidence $\begin{aligned} w(x) & =P(e \mid x) \\ B(X) & \propto P(e \mid X) B^{\prime}(X) \end{aligned}$ - As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of $\mathrm{P}(\mathrm{e})$)				$:$ 0 \bullet 0 \vdots 0 0

Particle Filtering: Resample		
- Rather than tracking weighted samples, we resample - N times, we choose from our weighted sample distribution (i.e. draw with replacement) - This is equivalent to renormalizing the distribution - Now the update is complete for this time step, continue with the next one	Particles (3,2) w $(2,3) W=.2$ $(3,2) w=.9$ $(3,3) w=.4$ $(3,2) w=.9$ $(1,3) w=1$ $(2,3) w=.2$ $(2,2) w=-4$ $\left(\begin{array}{ll}(N e w) \\ (3,2) \\ (2,2) \\ (3,2) \\ (2,2) \\ (2,3) \\ (3,3) \\ (1,2) \\ (1,3) \\ (2,3) \\ (3,2) \\ (3,2)\end{array}\right.$	

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the $t=1$ Bayes net - Example particle: $\mathbf{G}_{1}{ }^{a}=(3,3) G_{1}{ }^{b}=(5,3)$
- Elapse time: Sample a successor for each particle - Example successor: $\mathbf{G}_{\mathbf{2}}{ }^{\mathbf{a}}=(2,3) \mathbf{G}_{\mathbf{2}}{ }^{\mathbf{b}}=(6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $P\left(E_{1}{ }^{a} \mid G_{1}{ }^{a}\right)^{*} P\left(E_{1}{ }^{b} \mid G_{1}{ }^{b}\right)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

