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Don't complain; the weather could be worse.
2

CSE 473: Artificial Intelligence
Hidden Markov Models

Steve Tanimoto --- University of Washington
[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]

Hidden Markov Models

Hidden Markov Models
 Markov chains not so useful for most agents

 Need observations to update your beliefs
 Hidden Markov models (HMMs)

 Underlying Markov chain over states X
 You observe outputs (effects) at each time step
 As a Bayes net (or more generally, a graphical model):
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Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)
+r +r 0.7
+r -r 0.3
-r +r 0.3
-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)
+r +u 0.9
+r -u 0.1
-r +u 0.2
-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:
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Ghostbusters HMM
 P(X1) = uniform
 P(X’|X) = ghosts usually move clockwise, but sometimes move in a random direction or stay put
 P(E|X) = same sensor model as before:red means close, green means far away.
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Etc… (must specify for other distances)

Etc…

Joint Distribution of an HMM

 Joint distribution:

 More generally:

 Questions to be resolved:
 Does this indeed define a joint distribution?
 Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?
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 From the chain rule, every joint distribution over                                           can be written as:

 Assuming that

gives us the expression posited on the previous slide: 

X2

E1

X1 X3

E2 E3

Chain Rule and HMMs

Chain Rule and HMMs
 From the chain rule, every joint distribution over                                         can be written as:

 Assuming that for all t: 
 State independent of all past states and all past evidence given the previous state, i.e.: 

 Evidence is independent of all past states and all past evidence given the current state, i.e.:

gives us the expression posited on the earlier slide: 
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Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process: future depends on past via the present
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? ?

Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process: future depends on past via the present
 Current observation independent of all else given current state
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Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process: future depends on past via the present
 Current observation independent of all else given current state
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Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process: future depends on past via the present
 Current observation independent of all else given current state

 Quiz: does this mean that evidence variables are guaranteed to be independent?
 [No, they are correlated by the hidden state(s)]
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Real HMM Examples
 Speech recognition HMMs:

 Observations are acoustic signals (continuous valued)
 States are specific positions in specific words (so, tens of thousands)

 Machine translation HMMs:
 Observations are words (tens of thousands)
 States are translation options

 Robot tracking:
 Observations are range readings (continuous)
 States are positions on a map (continuous)

HMM Computations
 Given 

 parameters
 evidence E1:n =e1:n

 Inference problems include:
 Filtering, find P(Xt|e1:t) for all t
 Smoothing, find P(Xt|e1:n) for all t
 Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)

Filtering / Monitoring
 Filtering, or monitoring, is the task of tracking the distribution Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time
 We start with B1(X) in an initial setting, usually uniform
 As time passes, or we get observations, we update B(X)
 The Kalman filter was invented in the 60’s and first implemented as a method of trajectory estimation for the Apollo program

 (Kalman filter is a type of HMM with continuous values)

Example: Robot Localization

t=0
Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example from Michael Pfeiffer
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Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

10Prob

Example: Robot Localization

t=2
10Prob

Example: Robot Localization

t=3
10Prob

Example: Robot Localization

t=4
10Prob

Example: Robot Localization

t=5
10Prob

Inference: Base Cases

E1

X1
X2X1
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Passage of Time
 Assume we have current belief P(X | evidence to date)

 Then, after one time step passes:

 Basic idea: beliefs get “pushed” through the transitions
 With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it includes

X2X1

 Or compactly:

Example: Passage of Time
 As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)

Video of Passage of Time (Transition Model)

Observation
 Assume we have current belief P(X | previous evidence):

 Then, after evidence comes in:

 Or, compactly:

E1

X1

 Basic idea: beliefs “reweighted” by likelihood of evidence
 Unlike passage of time, we have to renormalize

Example: Observation
 As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation

Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)
+r +r 0.7
+r -r 0.3
-r +r 0.3
-r -r 0.7

Rt Ut P(Ut|Rt)
+r +u 0.9
+r -u 0.1
-r +u 0.2
-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5B(-r)  = 0.5

B’(+r) = 0.5B’(-r)  = 0.5

B(+r) = 0.818B(-r)  = 0.182

B’(+r) = 0.627B’(-r)  = 0.373

B(+r) = 0.883B(-r)  = 0.117
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The Forward Algorithm
 We are given evidence at each time and want to know

 We can derive the following updates We can normalize as we go if we want to have P(x|e) at each time step, or just once at the end…

Online Belief Updates
 Every time step, we start with current P(X | evidence)
 We update for time:

 We update for evidence:

 The forward algorithm does both at once (and doesn’t normalize)
 Potential issue: space is |X| and time is |X|2 per time step

X2X1

X2

E2

Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Video of Demo Pacman – Sonar (with beliefs)

HMM Computations (Reminder)
 Given 

 parameters
 evidence E1:n =e1:n

 Inference problems include:
 Filtering, find P(Xt|e1:t) for all t
 Smoothing, find P(Xt|e1:n) for all t
 Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)

Smoothing
 Smoothing is the process of using all evidence better individual estimates for a hidden state (or all hidden states)

 Idea: run FORWARD algorithm up until t, and a similar BACKWARD algorithm from the final timestep n down to t+1

36
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Most Likely Explanation

HMMs: MLE Queries
 HMMs defined by

 States X
 Observations E
 Initial distribution:
 Transitions:
 Emissions:

 New query: most likely explanation:
 New method: the Viterbi algorithm

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

State Trellis
 State trellis: graph of states and transitions over time

 Each arc represents some transition
 Each arc has weight
 Each path is a sequence of states
 The product of weights on a path is that sequence’s probability along with the evidence
 Forward algorithm computes sums of paths, Viterbi computes best paths

sun
rain

sun
rain

sun
rain

sun
rain

Forward / Viterbi Algorithms
sun
rain

sun
rain

sun
rain

sun
rain

Forward Algorithm (Sum) Viterbi Algorithm (Max)

Most Probably Explanation (Sequence)
 Viterbi algorithm: very similar to filtering algorithm (FORWARD)
 Essentially: replace “sum” with “max”, keep back pointers


