Hidden Markov Models

Hidden Markov Models

= Markov chains not so useful for most agents
* Need observations to update your beliefs

= Hidden Markov models (HMMs)
= Underlying Markov chain over states X
* You observe outputs (effects) at each time step
= Asa Bayes net (or more generally, a graphical model):
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Ghostbusters HMM

Chain Rule and HMMs

P(X,) = uniform
P(X’|X) = ghosts usually move clockwise,
but sometimes move in a random direction or stay put

= P(E|X) = same sensor model as before:
red means close, green means far away.
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P(X'|X=<1,2>)
P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
PEX) 0.05 0.15 0.5 0.

= From the chain rule, every joint distribution over x, g X7, Er can be written as:

T
P(Xy, By, Xp, Br) = POX)P(EX) T] PN B X B PRI X By, Xy By, Xo)
t=2

= Assuming that for all t:
= State independent of all past states and all past evidence given the previous state, i.e.:

Xy AL X1, By, X0, Ep 0, Bp o | Xy

= Evidence is independent of all past states and all past evidence given the current state, i.e.:
By AL X, By, X0, By 0, X1, Bq | Xy

gives us the expression posited on the earlier inde:T

P(Xy, Br,.... X7, Br) = P(X1)P(Ey|X1) [| P(X0|X021) P(E2|X)

Etc... (must specify for other distances)

Joint Distribution of an HMM

Conditional Independence
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= Joint distribution:
P(X1, E1, Xa, By, X3, B3) = P(X1) P(Ey|X1) P(X2| X1) P(E2| X2) P(X3| X2) P(E3| X3)

= More generally: r

P(Xy,B,..., Xp, Br) = P(X1)P(E1| X1) [| P(Xe| X0 1) P(E|X0)

. =2
= Questions to be resolved:

= Does this indeed define a joint distribution?
= Can every joint distribution be factored this way, or are we making some assumptions about the
joint distribution by using this factorization?

= HMMs have two important independence properties:

= Markov hidden process: future depends on past via the present
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Chain Rule and HMMs

Conditional Independence

= From the chain rule, every joint distribution over X, E|, X,, E,, X3, E3 can be written as:

P(X1, B, X, By, X3, E3) =P(X1)P(E1|X1)P(X2| X1, E1)P(Es| X1, B, X5)
P(X3|X1, B, Xo, B2) P(E3| X1, Er, Xa, Ea, X3)

= Assuming that
o U Ey | Xy, Eo L Xy, By | Xo, X3l X1,E1,Ey | Xy, Es 1l Xy, By, Xy, E> | X}

gives us the expression posited on the previous slide:

P(X1, E1, X2, Bz, X3, E3) = P(X1)P(E1|X1) P(X2| X1) P(E2| X2) P(X5| X3) P(E3| X;)

= HMMs have two important independence properties:
= Markov hidden process: future depends on past via the present

= Current observation independent of all else given current state
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Conditional Independence

HMM Computations

= HMMs have two important independence properties:
= Markov hidden process: future depends on past via the present

= Current observation independent of all else given current state

= Given
= parameters
= evidence £, =e,,,

= Inference problems include:
= Filtering, find P(X/Je,.) for all ¢
= Smoothing, find P(X)e,.,) for all ¢
= Most probable explanation, find
x*,,= argmaxx,,, P(xy,le;.,)

Conditional Independence

Filtering / Monitoring

= HMMs have two important independence properties:
= Markov hidden process: future depends on past via the present

= Current observation independent of all else given current state
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= Quiz: does this mean that evidence variables are guaranteed to be independent?

= [No, they are correlated by the hidden state(s)]

= Filtering, or monitoring, is the task of tracking the distribution

B,(X) = P(X; | ey, ..., &) (the belief state) over time
= We start with B,(X) in an initial setting, usually uniform
= Astime passes, or we get observations, we update B(X)

= The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program
* (Kalman filter is a type of HMM with continuous values)

Real HMM Examples

Example: Robot Localization

= Speech recognition HMMs:
= Observations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

= Machine translation HMMs:
= Observations are words (tens of thousands)
= States are translation options

= Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)

Example from
Michael Pfeiffer

[ ]

Prob 0 1
t=0
Sensor model: can read in which directions there is a wall,
never more than 1 mistake
Motion model: may not execute action with small prob.




Example: Robot Localization

Example: Robot Localization

B /&‘ -

[
Prob 0 1

Prob 0
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t=1

Lighter grey: was possible to get the reading, but less likely b/c

required 1 mistake

t=4

Example: Robot Localization

Example: Robot Localization

Prob 0

Prob 0 1

t=5

Example: Robot Localization

Inference: Base Cases
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P(X1le1) P(X2)
P(ailer) = P(a1.e1)/Pler) P(z) = ¥ Pe1,2)

o<xy Ples,e1) =3 P(z1)P(azlr1)
= P(z1)P(e1]21) o




Passage of Time

Observation

= Assume we have current belief P(X | evidence to date) @@
B(Xy) = P(Xtle1:)

= Then, after one time step passes:
P(Xppler) =Y P(Xeir,wilers)
S

= Z P(Xe|we, ere) Pailer) = Or compactly:

B(Xen) = 3 P(X'|a) Bla)

o
= ZP(XHl‘Zt)P(-"/‘“ +) -
kS

= Basic idea: beliefs get “pushed” through the transitions
= With the “B” notation, we have to be careful about what time step t the belief is about, and what
evidence it include:

= Assume we have current belief P(X | previous evidence):
B'(Xi41) = P(Xiqaler)
= Then, after evidence comes in:
P(Xipileris1) = P(Xeq1,eer1lens)/Plecyilert)
X,y P(Xit1,eeq1ler)

= P(egralers, Xoy1)P(Xeyalerr)

= P(eer1| Xeq1) P(Xesaler)

= Basic idea: beliefs “reweighted”
by likelihood of evidence

= Unlike passage of time, we havd
to renormalize

= Or, compactly:
B(Xi41) &<xpyy Pleryr| X)) B/ (Xps1)

Example: Passage of Time

Example: Observation

= Astime passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)

= As we get observations, beliefs get reweighted, uncertainty “"decreases”

Before observation After observation

B(X)  P(e|X)B'(X)

Video of Passage of Time (Transition Model)

Example: Weather HMM

_B(+)=05 B'(+) = 0.627
B(r) =05 /" B'(-r) =0373
B(+r)=0.5 B(+r)=0.818 ,// B(+r)=0.883
8(r) =05 B() =0.182 8(+) =0117
» 0 ° R [ Re [ P(RslR | [ R [ U ] PULIRY
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The Forward Algorithm

Video of Demo Pacman — Sonar (with beliefs)

= We are given evidence at each time and want to know

By(X) = P(X¢le1:)

= We can derive the following updates
We can normalize as we go if we
SN want to have P(x|e) at each time
P(wyler) ocx Py, e1:) ———— step, or just once at the end...
=Y P(wi_1,71,e1:0)

Ty—1

> P(wi-1,e1:-1) P(arai—1) Ple|ar)

Tp—1

= P(el) Y Pailoy—1)P(a—1,e1:-1)

Ti—1

Online Belief Updates

HMM Computations (Reminder)

Every time step, we start with current P(X | evidence)
We update for time:

P(xiler—1) = > P(w—1ler:—1) - P(wilmi—1)
Ti—1
We update for evidence:
P(z¢le1:t) ocx P(xiler:i—1) - Pletlt)

The forward algorithm does both at once (and doesn’t normalize)
Potential issue: space is |X| and time is |X|2 per time step

= Given
= parameters
= evidence E|,, =e,,,

= Inference problems include:
= Filtering, find P(X/Je,.) for all ¢
= Smoothing, find P(X|e,.,) for all ¢
= Most probable explanation, find
X*), = argmaxx,, P(xp,le;,)

Pacman — Sonar (P4)

Smoothing

o coi P B ) =

SCORE: -6 21.0 26.0

[Demo: Pacman — Sonar — No Beliefs(L14D1

= Smoothing is the process of using all evidence better individual
estimates for a hidden state (or all hidden states)
= |dea: run FORWARD algorithm up until t, and a similar BACKWARD
algorithm from the final timestep n down to t+1
P(Xler,) = aP(Xlew)Perr1a] X, e1y)
= aP(Xi|ew)Pler1|X)
= afiy x by




Most Likely Explanation

Forward / Viterbi Algorithms
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XX
roin 4 rain > roin = ran |
X1 X5 Xy
Forward Algorithm (Sum) Viterbi Algorithm (Max)
filwd] = Pty e1:0) me[ze] = max P(e1:-1, 2, e1:0)

= Pletler) max Plaar1ym-1le1-1)

= P(etla) 3 P(atlee-1)fi-1ler-1]
et

HMMs: MLE Queries

Most Probably Explanation (Sequence)

HMM s defined by
= States X

O On 00Ot
= Observations E

= Initial distribution: P(X1) ‘ ‘
= Transitions: P(X|X_1)
= Emissions: P(E|X)

New query: most likely explanation: argmax P(zq:4le1:¢)
Tl

New method: the Viterbi algorithm

= Vijterbi algorithm: very similar to filtering algorithm (FORWARD)
= Essentially: replace “sum” with “max”, keep back pointers

Rain | Rain, Rainy Rainy Rain 5
state true | truc e true
space
paths \

Salse false false false false
umbrella 1rue truc false » ‘e
most 8182 5155 L0361 .0334 v 0210
likely
il 1818 £X 0491 AN 1237 0173 K 0024

m,, m,., m,.; m,., m,.s

State Trellis

State trellis: graph of states and transitions over time

X X o Xy

Each arc represents some transition ~ Tt—1 — &t

Each arc has weight P(at|wi—1) Ple|ar)

Each path is a sequence of states

The product of weights on a path is that sequence’s probability along with the evidence
Forward algorithm computes sums of paths, Viterbi computes best paths




