

Chain Rule and HMMMS

- From the chain rule, every joint distribution over $X_{1}, E_{1}, \ldots, X_{T}, E_{T}$ can be written as:
$\quad P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{1}, E_{1}, \ldots, X_{t-1}, E_{t-1}\right) P\left(E_{t} \mid X_{1}, E_{1}, \ldots, X_{t-1}, E_{t-1}, X_{t}\right)$
- Assuming that for all t :
- State independent of all past states and all past evidence given the previous state, i.e.:
$X_{t} \Perp X_{1}, E_{1}, \ldots, X_{t-2}, E_{t-2}, E_{t-1} \mid X_{t-1}$
- Evidence is independent of all past states and all past evidence given the current state, i.e.:
$E_{t} \Perp X_{1}, E_{1}, \ldots, X_{t-2}, E_{t-2}, X_{t-1}, E_{t-1} \mid X_{t}$
gives us the expression posited on the earlier slide:
$P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)$

Joint Distribution of an HMM
- Joint distribution:
$P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(E_{2} \mid X_{2}\right) P\left(X_{3} \mid X_{2}\right) P\left(E_{3} \mid X_{3}\right)$
- More generally:
$P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)$
• Questions to be resolved:
- Does this indeed define a joint distribution?
- Can every joint distribution be factored this way, or are we making some assumptions about the
joint distribution by using this factorization?

| Conditional Independence |
| :---: | :---: |
| : MMMs have two important independence properties: |
| : Markov hidden process: future depends on past via the present |
| ? |

Chain Rule and HMMS

- From the chain rule, every joint distribution over $X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}$ can be written as:
$P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}, E_{1}\right) P\left(E_{2} \mid X_{1}, E_{1}, X_{2}\right)$
$P\left(X_{3} \mid X_{1}, E_{1}, X_{2}, E_{2}\right) P\left(E_{3} \mid X_{1}, E_{1}, X_{2}, E_{2}, X_{3}\right)$
- Assuming that
$X_{2} \Perp E_{1}\left|X_{1}, \quad E_{2} \Perp X_{1}, E_{1}\right| X_{2}, \quad X_{3} \Perp X_{1}, E_{1}, E_{2}\left|X_{2}, \quad E_{3} \Perp X_{1}, E_{1}, X_{2}, E_{2}\right| X$
gives us the expression posited on the previous slide:
$P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(E_{2} \mid X_{2}\right) P\left(X_{3} \mid X_{2}\right) P\left(E_{3} \mid X_{3}\right)$

HMM Computations
- Given
parameters
- evidence $E_{1: n}=e_{1: n}$
- Inference problems include:
- Filtering, find $P\left(X_{t} \mid e_{1: 7}\right.$ for all t
- Smoothing, find $P\left(X_{l} \mid e_{1: n}\right.$ for all t
- Most probable explanation, find
$x_{1: n}^{*}=$ argmax

Conditional Independence
- HMMs have two important independence properties: - Markov hidden process: future depends on past via the present - Current observation independent of all else given current state - Quiz: does this mean that evidence variables are guaranteed to be independent? - [No, they are correlated by the hidden state(s)]

Filtering / Monitoring
- Filtering, or monitoring, is the task of tracking the distribution $B_{t}(X)=P_{t}\left(X_{t} \mid e_{1}, \ldots, e_{t}\right)$ (the belief state) over time - We start with $\mathrm{B}_{1}(\mathrm{X})$ in an initial setting, usually uniform - As time passes, or we get observations, we update $\mathrm{B}(\mathrm{X})$ - The Kalman filter was invented in the 60 's and first implemented as a method of trajectory estimation for the Apollo program - (Kalman filter is a type of HMM with continuous values)

Real HMM Examples
- Speech recognition HMMs: - Observations are acoustic signals (continuous valued) - States are specific positions in specific words (so, tens of thousands) - Machine translation HMMs: - Observations are words (tens of thousands) - States are translation options - Robot tracking: - Observations are range readings (continuous) - States are positions on a map (continuous)

The Forward Algorithm
" We are given evidence at each time and want to know
$B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)$
- We can derive the following updates
$P\left(x_{t} \mid e_{1: t}\right)$ $\propto \propto_{X} P\left(x_{t}, e_{1: t}\right)$ $=\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right)$ $=\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$ $=P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)$

Video of Demo Pacman - Sonar (with beliefs)

Online Belief Updates
" Every time step, we start with current $\mathrm{P}(\mathrm{X} \mid$ evidence $)$
" We update for time:
$P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)$
- We update for evidence:
$P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)$
- The forward algorithm does both at once (and doesn't normalize)
- Potential issue: space is $\|\mathrm{X}\|$ and time is $\|\mathrm{X}\|^{2}$ per time step

HMM Computations (Reminder)
- Given
- parameters
- evidence $E_{1: n}=e_{1: n}$
- Inference problems include:
- Filtering, find $P\left(X_{t} \mid e_{1: t}\right)$ for all t
- Smoothing, find $P\left(X_{t} \mid e_{1: n}\right)$ for all t
- Most probable explanation, find
$x^{*}{ }_{1: n}=\operatorname{argmax}_{x_{1: n}} P\left(x_{1: n} \mid e_{1: n}\right)$

Smoothing
- Smoothing is the process of using all evidence better individual
estimates for a hidden state (or all hidden states)
- Idea: run FORWARD algorithm up until t, and a similar BACKWARD
algorithm from the final timestep n down to $t+1$
---:

Forward / Viterbi Algorithms
Forward Algorithm (Sum)
$f_{t}\left[x_{t}\right]=P\left(x_{t}, e_{1: t}\right)$
$=P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) f_{t-1}\left[x_{t-1}\right]$

State Trellis
- State trellis: graph of states and transitions over time - Each arc represents some transition $\quad x_{t-1} \rightarrow x_{t}$ - Each arc has weight $\quad P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$ - Each path is a sequence of states - The product of weights on a path is that sequence's probability along with the evidence - Forward algorithm computes sums of paths, Viterbi computes best paths

