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Don't complain; the weather could be worse.
2

CSE 473: Artificial Intelligence
Hidden Markov Models

Steve Tanimoto --- University of Washington
[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]

Hidden Markov Models

Hidden Markov Models
 Markov chains not so useful for most agents

 Need observations to update your beliefs
 Hidden Markov models (HMMs)

 Underlying Markov chain over states X
 You observe outputs (effects) at each time step
 As a Bayes net (or more generally, a graphical model):
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Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)
+r +r 0.7
+r -r 0.3
-r +r 0.3
-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)
+r +u 0.9
+r -u 0.1
-r +u 0.2
-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:
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Ghostbusters HMM
 P(X1) = uniform
 P(X’|X) = ghosts usually move clockwise, but sometimes move in a random direction or stay put
 P(E|X) = same sensor model as before:red means close, green means far away.
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Etc… (must specify for other distances)

Etc…

Joint Distribution of an HMM

 Joint distribution:

 More generally:

 Questions to be resolved:
 Does this indeed define a joint distribution?
 Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?
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 From the chain rule, every joint distribution over                                           can be written as:

 Assuming that

gives us the expression posited on the previous slide: 
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Chain Rule and HMMs

Chain Rule and HMMs
 From the chain rule, every joint distribution over                                         can be written as:

 Assuming that for all t: 
 State independent of all past states and all past evidence given the previous state, i.e.: 

 Evidence is independent of all past states and all past evidence given the current state, i.e.:

gives us the expression posited on the earlier slide: 
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Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process: future depends on past via the present
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? ?

Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process: future depends on past via the present
 Current observation independent of all else given current state
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Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process: future depends on past via the present
 Current observation independent of all else given current state
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Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process: future depends on past via the present
 Current observation independent of all else given current state

 Quiz: does this mean that evidence variables are guaranteed to be independent?
 [No, they are correlated by the hidden state(s)]

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
? ?

Real HMM Examples
 Speech recognition HMMs:

 Observations are acoustic signals (continuous valued)
 States are specific positions in specific words (so, tens of thousands)

 Machine translation HMMs:
 Observations are words (tens of thousands)
 States are translation options

 Robot tracking:
 Observations are range readings (continuous)
 States are positions on a map (continuous)

HMM Computations
 Given 

 parameters
 evidence E1:n =e1:n

 Inference problems include:
 Filtering, find P(Xt|e1:t) for all t
 Smoothing, find P(Xt|e1:n) for all t
 Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)

Filtering / Monitoring
 Filtering, or monitoring, is the task of tracking the distribution Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time
 We start with B1(X) in an initial setting, usually uniform
 As time passes, or we get observations, we update B(X)
 The Kalman filter was invented in the 60’s and first implemented as a method of trajectory estimation for the Apollo program

 (Kalman filter is a type of HMM with continuous values)

Example: Robot Localization

t=0
Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example from Michael Pfeiffer
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Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

10Prob

Example: Robot Localization

t=2
10Prob

Example: Robot Localization

t=3
10Prob

Example: Robot Localization

t=4
10Prob

Example: Robot Localization

t=5
10Prob

Inference: Base Cases

E1

X1
X2X1



5

Passage of Time
 Assume we have current belief P(X | evidence to date)

 Then, after one time step passes:

 Basic idea: beliefs get “pushed” through the transitions
 With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it includes

X2X1

 Or compactly:

Example: Passage of Time
 As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)

Video of Passage of Time (Transition Model)

Observation
 Assume we have current belief P(X | previous evidence):

 Then, after evidence comes in:

 Or, compactly:

E1

X1

 Basic idea: beliefs “reweighted” by likelihood of evidence
 Unlike passage of time, we have to renormalize

Example: Observation
 As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation

Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)
+r +r 0.7
+r -r 0.3
-r +r 0.3
-r -r 0.7

Rt Ut P(Ut|Rt)
+r +u 0.9
+r -u 0.1
-r +u 0.2
-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5B(-r)  = 0.5

B’(+r) = 0.5B’(-r)  = 0.5

B(+r) = 0.818B(-r)  = 0.182

B’(+r) = 0.627B’(-r)  = 0.373

B(+r) = 0.883B(-r)  = 0.117
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The Forward Algorithm
 We are given evidence at each time and want to know

 We can derive the following updates We can normalize as we go if we want to have P(x|e) at each time step, or just once at the end…

Online Belief Updates
 Every time step, we start with current P(X | evidence)
 We update for time:

 We update for evidence:

 The forward algorithm does both at once (and doesn’t normalize)
 Potential issue: space is |X| and time is |X|2 per time step

X2X1

X2

E2

Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Video of Demo Pacman – Sonar (with beliefs)

HMM Computations (Reminder)
 Given 

 parameters
 evidence E1:n =e1:n

 Inference problems include:
 Filtering, find P(Xt|e1:t) for all t
 Smoothing, find P(Xt|e1:n) for all t
 Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)

Smoothing
 Smoothing is the process of using all evidence better individual estimates for a hidden state (or all hidden states)

 Idea: run FORWARD algorithm up until t, and a similar BACKWARD algorithm from the final timestep n down to t+1

36
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Most Likely Explanation

HMMs: MLE Queries
 HMMs defined by

 States X
 Observations E
 Initial distribution:
 Transitions:
 Emissions:

 New query: most likely explanation:
 New method: the Viterbi algorithm

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

State Trellis
 State trellis: graph of states and transitions over time

 Each arc represents some transition
 Each arc has weight
 Each path is a sequence of states
 The product of weights on a path is that sequence’s probability along with the evidence
 Forward algorithm computes sums of paths, Viterbi computes best paths

sun
rain

sun
rain

sun
rain

sun
rain

Forward / Viterbi Algorithms
sun
rain

sun
rain

sun
rain

sun
rain

Forward Algorithm (Sum) Viterbi Algorithm (Max)

Most Probably Explanation (Sequence)
 Viterbi algorithm: very similar to filtering algorithm (FORWARD)
 Essentially: replace “sum” with “max”, keep back pointers


