
10/8/2015

1

CSE 473: Artificial Intelligence
Autumn 2015

Constraint Satisfaction
Steve Tanimoto

With slides from :
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

What is Search For?
 Models of the world: single agent, deterministic actions,

fully observed state, discrete state space

 Planning: sequences of actions
 The path to the goal is the important thing
 Paths have various costs, depths
 Heuristics to guide, fringe to keep backups

 Identification: assignments to variables
 The goal itself is important, not the path
 All paths at the same depth (for some formulations)
 CSPs are specialized for identification problems

Constraint Satisfaction Problems
 Standard search problems:

 State is a “black box”: arbitrary data structure
 Goal test: any function over states
 Successor function can be anything

 Simple example of a formal representation language
 Allows useful general-purpose algorithms with more power than standard search algorithms

 Constraint satisfaction problems (CSPs):
 A special subset of search problems
 State is defined by variables Xi with values from a domain D (sometimes D depends on i)
 Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Example: N-Queens
 Formulation 1:
 Variables:
 Domains:
 Constraints

 Note: need to make sure that constraints refer to
different squares

Example: N-Queens
 Formulation 2:
 Variables:
 Domains:
 Constraints:

Implicit:

Explicit:
-or-

Example: Map-Coloring
 Variables:
 Domain:
 Constraints: adjacent regions must have different colors

 Solutions are assignments satisfying all constraints, e.g.:

10/8/2015

2

Constraint Graphs
 Binary CSP: each constraint relates (at most) two variables
 Binary constraint graph: nodes are variables, arcs show constraints

 General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic
 Variables (circles):

 Domains:

 Constraints (boxes):

Example: Sudoku
 Variables:
 Domains:
 Constraints:

9-way alldiff for each row
9-way alldiff for each column

9-way alldiff for each region

 Each (open) square

 {1,2,…,9}

Varieties of CSPs
 Discrete Variables

 Finite domains
 Size d means O(dn) complete assignments
 E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

 Infinite domains (integers, strings, etc.)
 E.g., job scheduling, variables are start/end times for each job
 Linear constraints solvable, nonlinear undecidable

 Continuous variables
 E.g., start/end times for Hubble Telescope observations
 Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints
 Varieties of Constraints

 Unary constraints involve a single variable (equiv. to shrinking domains):

 Binary constraints involve pairs of variables:

 Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

 Preferences (soft constraints):
 E.g., red is better than green
 Often representable by a cost for each variable assignment
 Gives constrained optimization problems
 (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs
 Assignment problems: e.g., who teaches what class
 Timetabling problems: e.g., which class is offered when and where?
 Hardware configuration
 Transportation scheduling
 Factory scheduling
 Floorplanning
 Fault diagnosis
 … lots more!
 Many real-world problems involve real-valued variables…

10/8/2015

3

Standard Search Formulation
 Standard search formulation of CSPs (incremental)
 Let's start with a straightforward, dumb approach, then fix it
 States are defined by the values assigned so far

 Initial state: the empty assignment, {}
 Successor function: assign a value to an unassigned variable
 Goal test: the current assignment is complete and satisfies all constraints

Search Methods
 What does BFS do?

 What does DFS do?

Backtracking Search

 Idea 2: Only allow legal assignments at each point
 I.e. consider only values which do not conflict previous assignments
 Might have to do some computation to figure out whether a value is ok
 “Incremental goal test”

 Depth-first search for CSPs with these two improvements is called backtracking search
 Backtracking search is the basic uninformed algorithm for CSPs
 Can solve n-queens for n  25

 Idea 1: Only consider a single variable at each point
 Variable assignments are commutative, so fix ordering
 I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 Only need to consider assignments to a single variable at each step
 How many leaves are there?

Backtracking Search

 What are the choice points?

Backtracking Example Improving Backtracking
 General-purpose ideas give huge gains in speed
 Ordering:

 Which variable should be assigned next?
 In what order should its values be tried?

 Filtering: Can we detect inevitable failure early?
 Structure: Can we exploit the problem structure?

10/8/2015

4

Forward Checking
 Idea: Keep track of remaining legal values for unassigned

variables (using immediate constraints)
 Idea: Terminate when any variable has no legal values

WA SA
NT Q

NSW
V

Constraint Propagation
 Forward checking propagates information from assigned to adjacent unassigned variables, but doesn't detect more distant failures:

WA SA
NT Q

NSW
V

 NT and SA cannot both be blue!
 Why didn’t we detect this yet?
 Constraint propagation repeatedly enforces constraints (locally)

 Simplest form of propagation makes each pair of variables
consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y

Arc consistency

Consistent!

 Simplest form of propagation makes each pair of variables
consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y

Arc consistency

 Simplest form of propagation makes each pair of variables
consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y
 When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

 If X loses a value, all pairs Z  X need to be rechecked

Arc consistency Arc consistency
 Simplest form of propagation makes each pair of variables

consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y
 When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

 If X loses a value, all pairs Z  X need to be rechecked

10/8/2015

5

Arc consistency
 Simplest form of propagation makes each pair of variables

consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y
 When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

 If X loses a value, all pairs Z  X need to be rechecked

 Simplest form of propagation makes each pair of variables
consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y
 When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

Arc consistency

 Simplest form of propagation makes each pair of variables
consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y
 When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

 Arc consistency detects failure earlier than forward checking
 Can be run before or after each assignment

Arc consistency Arc Consistency

 Runtime: O(nd3), can be reduced to O(n2d2)
 … but detecting all possible future problems is NP-hard – why?

Limitations of Arc Consistency
 After running arc

consistency:
 Can have one solution left
 Can have multiple solutions

left
 Can have no solutions left

(and not know it)

What went
wrong here?

K-Consistency*
 Increasing degrees of consistency

 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

 Higher k more expensive to compute
 (You need to know the k=2 algorithm)

10/8/2015

6

Ordering: Minimum Remaining Values
 Minimum remaining values (MRV):

 Choose the variable with the fewest legal values

 Why min rather than max?
 Also called “most constrained variable”
 “Fail-fast” ordering

Ordering: Degree Heuristic
 Tie-breaker among MRV variables
 Degree heuristic:

 Choose the variable participating in the most constraints on remaining variables

 Why most rather than fewest constraints?

Ordering: Least Constraining Value
 Given a choice of variable:

 Choose the least constraining value
 The one that rules out the fewest values in the remaining variables
 Note that it may take some computation to determine this!

 Why least rather than most?
 Combining these heuristics makes 1000 queens feasible

Problem Structure
 Tasmania and mainland are independent subproblems
 Identifiable as connected components of constraint graph
 Suppose each subproblem has c variables out of n total
 Worst-case solution cost is O((n/c)(dc)), linear in n

 E.g., n = 80, d = 2, c =20
 280 = 4 billion years at 10 million nodes/sec
 (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

 Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

 Algorithm for tree-structured CSPs:
 Order: Choose a root variable, order variables so that parents precede children

 Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi) Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)
 Runtime: O(n d2) (why?)

Tree-Structured CSPs

10/8/2015

7

Nearly Tree-Structured CSPs

 Conditioning: instantiate a variable, prune its neighbors' domains
 Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
 Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning
SA

SA SA SA

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)

Choose a cutset

Iterative Algorithms for CSPs
 Greedy and local methods typically work with “complete” states, i.e., all variables assigned
 To apply to CSPs:

 Allow states with unsatisfied constraints
 Operators reassign variable values

 Variable selection: randomly select any conflicted variable
 Value selection by min-conflicts heuristic:

 Choose value that violates the fewest constraints
 I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

 States: 4 queens in 4 columns (44 = 256 states)
 Operators: move queen in column
 Goal test: no attacks
 Evaluation: h(n) = number of attacks

Performance of Min-Conflicts
 Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

 The same appears to be true for any randomly-generated CSP exceptin a narrow range of the ratio

Summary
 CSPs are a special kind of search problem:

 States defined by values of a fixed set of variables
 Goal test defined by constraints on variable values

 Backtracking = depth-first search with one legal variable assigned per
node

 Variable ordering and value selection heuristics help significantly
 Forward checking prevents assignments that guarantee later failure
 Constraint propagation (e.g., arc consistency) does additional work to

constrain values and detect inconsistencies
 The constraint graph representation allows analysis of problem structure
 Tree-structured CSPs can be solved in linear time
 Iterative min-conflicts is usually effective in practice

10/8/2015

8

Local Search Local Search
 Tree search keeps unexplored alternatives on the fringe

(ensures completeness)

 Local search: improve a single option until you can’t
make it better (no fringe!)

 New successor function: local changes

 Generally much faster and more memory efficient (but
incomplete and suboptimal)

Hill Climbing
 Simple, general idea:

 Start wherever
 Repeat: move to the best neighboring state
 If no neighbors better than current, quit

 What’s bad about this approach?
 Complete?
 Optimal?

 What’s good about it?

Hill Climbing Diagram

Hill Climbing

Starting from X, where do you end up ?
Starting from Y, where do you end up ?
Starting from Z, where do you end up ?

Simulated Annealing
 Idea: Escape local maxima by allowing downhill moves

 But make them rarer as time goes on

48

10/8/2015

9

Simulated Annealing
 Theoretical guarantee:

 Stationary distribution:
 If T decreased slowly enough,

will converge to optimal state!
 Is this an interesting guarantee?
 Sounds like magic, but reality is reality:

 The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 People think hard about ridge operators which let you jump around the space in better ways

Genetic Algorithms

 Genetic algorithms use a natural selection metaphor
 Keep best N hypotheses at each step (selection) based on a fitness function
 Also have pairwise crossover operators, with optional mutation to give variety

 Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

 Why does crossover make sense here?
 When wouldn’t it make sense?
 What would mutation be?
 What would a good fitness function be?

GA’s for Locomotion

Hod Lipson’s Creative Machines Lab @ Cornell

