
10/8/2015

1

CSE 473: Artificial Intelligence
Autumn 2015

Constraint Satisfaction
Steve Tanimoto

With slides from :
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

What is Search For?
 Models of the world: single agent, deterministic actions,

fully observed state, discrete state space

 Planning: sequences of actions
 The path to the goal is the important thing
 Paths have various costs, depths
 Heuristics to guide, fringe to keep backups

 Identification: assignments to variables
 The goal itself is important, not the path
 All paths at the same depth (for some formulations)
 CSPs are specialized for identification problems

Constraint Satisfaction Problems
 Standard search problems:

 State is a “black box”: arbitrary data structure
 Goal test: any function over states
 Successor function can be anything

 Simple example of a formal representation language
 Allows useful general-purpose algorithms with more power than standard search algorithms

 Constraint satisfaction problems (CSPs):
 A special subset of search problems
 State is defined by variables Xi with values from a domain D (sometimes D depends on i)
 Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Example: N-Queens
 Formulation 1:
 Variables:
 Domains:
 Constraints

 Note: need to make sure that constraints refer to
different squares

Example: N-Queens
 Formulation 2:
 Variables:
 Domains:
 Constraints:

Implicit:

Explicit:
-or-

Example: Map-Coloring
 Variables:
 Domain:
 Constraints: adjacent regions must have different colors

 Solutions are assignments satisfying all constraints, e.g.:

10/8/2015

2

Constraint Graphs
 Binary CSP: each constraint relates (at most) two variables
 Binary constraint graph: nodes are variables, arcs show constraints

 General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic
 Variables (circles):

 Domains:

 Constraints (boxes):

Example: Sudoku
 Variables:
 Domains:
 Constraints:

9-way alldiff for each row
9-way alldiff for each column

9-way alldiff for each region

 Each (open) square

 {1,2,…,9}

Varieties of CSPs
 Discrete Variables

 Finite domains
 Size d means O(dn) complete assignments
 E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

 Infinite domains (integers, strings, etc.)
 E.g., job scheduling, variables are start/end times for each job
 Linear constraints solvable, nonlinear undecidable

 Continuous variables
 E.g., start/end times for Hubble Telescope observations
 Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints
 Varieties of Constraints

 Unary constraints involve a single variable (equiv. to shrinking domains):

 Binary constraints involve pairs of variables:

 Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

 Preferences (soft constraints):
 E.g., red is better than green
 Often representable by a cost for each variable assignment
 Gives constrained optimization problems
 (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs
 Assignment problems: e.g., who teaches what class
 Timetabling problems: e.g., which class is offered when and where?
 Hardware configuration
 Transportation scheduling
 Factory scheduling
 Floorplanning
 Fault diagnosis
 … lots more!
 Many real-world problems involve real-valued variables…

10/8/2015

3

Standard Search Formulation
 Standard search formulation of CSPs (incremental)
 Let's start with a straightforward, dumb approach, then fix it
 States are defined by the values assigned so far

 Initial state: the empty assignment, {}
 Successor function: assign a value to an unassigned variable
 Goal test: the current assignment is complete and satisfies all constraints

Search Methods
 What does BFS do?

 What does DFS do?

Backtracking Search

 Idea 2: Only allow legal assignments at each point
 I.e. consider only values which do not conflict previous assignments
 Might have to do some computation to figure out whether a value is ok
 “Incremental goal test”

 Depth-first search for CSPs with these two improvements is called backtracking search
 Backtracking search is the basic uninformed algorithm for CSPs
 Can solve n-queens for n 25

 Idea 1: Only consider a single variable at each point
 Variable assignments are commutative, so fix ordering
 I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 Only need to consider assignments to a single variable at each step
 How many leaves are there?

Backtracking Search

 What are the choice points?

Backtracking Example Improving Backtracking
 General-purpose ideas give huge gains in speed
 Ordering:

 Which variable should be assigned next?
 In what order should its values be tried?

 Filtering: Can we detect inevitable failure early?
 Structure: Can we exploit the problem structure?

10/8/2015

4

Forward Checking
 Idea: Keep track of remaining legal values for unassigned

variables (using immediate constraints)
 Idea: Terminate when any variable has no legal values

WA SA
NT Q

NSW
V

Constraint Propagation
 Forward checking propagates information from assigned to adjacent unassigned variables, but doesn't detect more distant failures:

WA SA
NT Q

NSW
V

 NT and SA cannot both be blue!
 Why didn’t we detect this yet?
 Constraint propagation repeatedly enforces constraints (locally)

 Simplest form of propagation makes each pair of variables
consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y

Arc consistency

Consistent!

 Simplest form of propagation makes each pair of variables
consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y

Arc consistency

 Simplest form of propagation makes each pair of variables
consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y
 When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

 If X loses a value, all pairs Z X need to be rechecked

Arc consistency Arc consistency
 Simplest form of propagation makes each pair of variables

consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y
 When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

 If X loses a value, all pairs Z X need to be rechecked

10/8/2015

5

Arc consistency
 Simplest form of propagation makes each pair of variables

consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y
 When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

 If X loses a value, all pairs Z X need to be rechecked

 Simplest form of propagation makes each pair of variables
consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y
 When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

Arc consistency

 Simplest form of propagation makes each pair of variables
consistent:
 X Y is consistent iff for every value of X there is some allowed value of Y
 When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

 Arc consistency detects failure earlier than forward checking
 Can be run before or after each assignment

Arc consistency Arc Consistency

 Runtime: O(nd3), can be reduced to O(n2d2)
 … but detecting all possible future problems is NP-hard – why?

Limitations of Arc Consistency
 After running arc

consistency:
 Can have one solution left
 Can have multiple solutions

left
 Can have no solutions left

(and not know it)

What went
wrong here?

K-Consistency*
 Increasing degrees of consistency

 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

 Higher k more expensive to compute
 (You need to know the k=2 algorithm)

10/8/2015

6

Ordering: Minimum Remaining Values
 Minimum remaining values (MRV):

 Choose the variable with the fewest legal values

 Why min rather than max?
 Also called “most constrained variable”
 “Fail-fast” ordering

Ordering: Degree Heuristic
 Tie-breaker among MRV variables
 Degree heuristic:

 Choose the variable participating in the most constraints on remaining variables

 Why most rather than fewest constraints?

Ordering: Least Constraining Value
 Given a choice of variable:

 Choose the least constraining value
 The one that rules out the fewest values in the remaining variables
 Note that it may take some computation to determine this!

 Why least rather than most?
 Combining these heuristics makes 1000 queens feasible

Problem Structure
 Tasmania and mainland are independent subproblems
 Identifiable as connected components of constraint graph
 Suppose each subproblem has c variables out of n total
 Worst-case solution cost is O((n/c)(dc)), linear in n

 E.g., n = 80, d = 2, c =20
 280 = 4 billion years at 10 million nodes/sec
 (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

 Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

 Algorithm for tree-structured CSPs:
 Order: Choose a root variable, order variables so that parents precede children

 Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi) Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)
 Runtime: O(n d2) (why?)

Tree-Structured CSPs

10/8/2015

7

Nearly Tree-Structured CSPs

 Conditioning: instantiate a variable, prune its neighbors' domains
 Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
 Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning
SA

SA SA SA

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)

Choose a cutset

Iterative Algorithms for CSPs
 Greedy and local methods typically work with “complete” states, i.e., all variables assigned
 To apply to CSPs:

 Allow states with unsatisfied constraints
 Operators reassign variable values

 Variable selection: randomly select any conflicted variable
 Value selection by min-conflicts heuristic:

 Choose value that violates the fewest constraints
 I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

 States: 4 queens in 4 columns (44 = 256 states)
 Operators: move queen in column
 Goal test: no attacks
 Evaluation: h(n) = number of attacks

Performance of Min-Conflicts
 Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

 The same appears to be true for any randomly-generated CSP exceptin a narrow range of the ratio

Summary
 CSPs are a special kind of search problem:

 States defined by values of a fixed set of variables
 Goal test defined by constraints on variable values

 Backtracking = depth-first search with one legal variable assigned per
node

 Variable ordering and value selection heuristics help significantly
 Forward checking prevents assignments that guarantee later failure
 Constraint propagation (e.g., arc consistency) does additional work to

constrain values and detect inconsistencies
 The constraint graph representation allows analysis of problem structure
 Tree-structured CSPs can be solved in linear time
 Iterative min-conflicts is usually effective in practice

10/8/2015

8

Local Search Local Search
 Tree search keeps unexplored alternatives on the fringe

(ensures completeness)

 Local search: improve a single option until you can’t
make it better (no fringe!)

 New successor function: local changes

 Generally much faster and more memory efficient (but
incomplete and suboptimal)

Hill Climbing
 Simple, general idea:

 Start wherever
 Repeat: move to the best neighboring state
 If no neighbors better than current, quit

 What’s bad about this approach?
 Complete?
 Optimal?

 What’s good about it?

Hill Climbing Diagram

Hill Climbing

Starting from X, where do you end up ?
Starting from Y, where do you end up ?
Starting from Z, where do you end up ?

Simulated Annealing
 Idea: Escape local maxima by allowing downhill moves

 But make them rarer as time goes on

48

10/8/2015

9

Simulated Annealing
 Theoretical guarantee:

 Stationary distribution:
 If T decreased slowly enough,

will converge to optimal state!
 Is this an interesting guarantee?
 Sounds like magic, but reality is reality:

 The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 People think hard about ridge operators which let you jump around the space in better ways

Genetic Algorithms

 Genetic algorithms use a natural selection metaphor
 Keep best N hypotheses at each step (selection) based on a fitness function
 Also have pairwise crossover operators, with optional mutation to give variety

 Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

 Why does crossover make sense here?
 When wouldn’t it make sense?
 What would mutation be?
 What would a good fitness function be?

GA’s for Locomotion

Hod Lipson’s Creative Machines Lab @ Cornell

