10/8/2015

CSE 473: Artificial Intelligence
Autumn 2015

Constraint Satisfaction

Steve Tanimoto

With slides from :
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

What is Search For?

= Models of the world: single agent, deterministic actions,
fully observed state, discrete state space

= Planning: sequences of actions
= The path to the goal is the important thing
= Paths have various costs, depths
= Heuristics to guide, fringe to keep backups

= |dentification: assignments to variables
= The goal itself is important, not the path
= All paths at the same depth (for some formulations)
= CSPs are specialized for identification problems

Constraint Satisfaction Problems

Example: N-Queens

= Standard search problems:
= State is a “black box”: arbitrary data structure
= Goal test: any function over states
= Successor function can be anything

= Constraint satisfaction problems (CSPs):
= A special subset of search problems
= State is defined by variables X; with values from a domain
D (sometimes D depends on i)

= Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

= Simple example of a formal representation
language
= Allows useful general-purpose algorithms with
more power than standard search algorithms

&

@

= Formulation 1:
= Variables: -
. 1
. Doma|n§: {O’jl}
= Constraints
Vi, g,k (Xij, Xi) € {(0,0),(0,1),(1,0)}
Vi, j, k (Xl_]’ Xk]) € {(07 0)7 (07 1)7 (17 0)}
Vi, g,k (Xijs Xitk,j+x) € {(0,0),(0,1),(1,0)}
Vi, j, k (X’L_] Xi+kaj—k) € {(07 0)7 (07 1)a (1»0)}
Z X;j=N
. I\Zlgte: need to make sure that constraints refer to
different squares

Example: N-Queens

= Formulation 2: Q1
= Variables: @, Q>
Q3

= Domains: {1,2,3,...N} Qa

= Constraints:

Implicit: V4, j non-threatening(Q);, Qj)

-or-

Explicit: (Q1,Q2) € {(1,3),(1,4),...}

Example: Map-Coloring

= Variables:
WA, NT, Q, NSW,V, SA, T

= D in: T
omain: p — {red, green, blue} \“
= Constraints: adjacent regions must have | .)

different colors

WA#NT
(WA,NT) € {(red, green), (red, blue), (green,red), ...}

= Solutions are assignments satisfying all
constraints, e.g.:

{WA =red, NT = green,Q = red,
NSW = green,V = red, SA = blue, T = green}

Constraint Graphs

= Binary CSP: each constraint relates (at most) two
variables

= Binary constraint graph: nodes are variables, arcs
show constraints

= General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

10/8/2015

Example: Cryptarithmetic

= Variables (circles):
FTUW RO X1 Xo X3 +

= Domains: F
{0,1,2,3,4,5,6,7,8,9}

= Constraints (boxes):
alldiff(F, T, U, W, R, O)

O+0=R+10-X3

Example: Sudoku

‘ i = Variables:
/4/ = Each (open) square
84 116 [
5 ” = Domains:
= {1,2,...,9)
d 1L 9 = Constraints:
6] [8 4] I3 %] :
2 915 1 9-way alldiff for each column
N 2 9-way alldiff for each row
718 26
2 3 9-way alldiff for each region

Varieties of CSPs

= Discrete Variables
= Finite domains
= Size d means O(d") complete assignments
= E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
= Infinite domains (integers, strings, etc.)
= E.g., job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

= Continuous variables
= E.g., start/end times for Hubble Telescope observations
= Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

= Varieties of Constraints
= Unary constraints involve a single variable (equiv. to shrinking domains):

SA # green

= Binary constraints involve pairs of variables:

SA#£WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

= Preferences (soft constraints):
= E.g., red is better than green
= Often representable by a cost for each variable assignment
= Gives constrained optimization problems
= (We'llignore these until we get to Bayes’ nets)

Real-World CSPs

= Assignment problems: e.g., who teaches what class

= Timetabling problems: e.g., which class is offered when
and where?

= Hardware configuration

= Transportation scheduling
= Factory scheduling

= Floorplanning

= Fault diagnosis

= ... lots more!

= Many real-world problems involve real-valued variables...

10/8/2015

Standard Search Formulation Search Methods
. ﬁﬁi?gﬁrgnféel?mh formulation of CSPs = What does BFS do? @
(@)
= Let's start with a straightforward, dumb @"
approach, then fix it o oo _

)

= What does DFS do? &

od)

= States are defined by the values assigned so far
= Initial state: the empty assignment, {}
= Successor function: assign a value to an unassigned
variable
= Goal test: the current assignment is complete and
satisfies all constraints

= Idea 1: Only consider a single variable at each point

* Variable assignments are commutative, so fix ordering function BACKTRACKING-SEARCH(csp) returns solution/failure

= le., [WA = red then NT = green] same as [NT = green then WA = red] return RECURSIVE-BACKTRACKING({ }, esp)

« Only need to consider assignments 1o a single variable at each step tlll}(tion R RSIVI BACKTRACKING(assignment, csp) returns soln /failure

if assignment is complete then return assignment

= How many leaves are there? var« SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp], assignment, csp)

= Idea 2: Only allow legal assignments at each point for each r'vr/.uv in F)RDERI-LMv_\l,\],\(»\L\U'.y;s(wm,4mu//~mu/‘ csp) do
if valuc is consistent with assignment given CONSTRAINTS[csp] then
= l.e. consider only values which do not conflict previous assignments add {var = valuc} to assignment
= Might have to do some computation to figure out whether a value is ok result — RECURSIVE-BACKTRACKING(assignment, csp)
. " if result # failure then return result

= ‘“Incremental goal test remove {var = valuc} from assignment

= Depth-first search for CSPs with these two improvements is called return failure

backtracking search
= Backtracking search is the basic uninformed algorithm for CSPs * What are the choice points?
= Can solve n-queens for n ~ 25

Backtracking Example Improving Backtracking

= General-purpose ideas give huge gains in speed

—] —)
= Ordering:
“_LL— ‘_Ll? “_LK = Which variable should be assigned next?

P = In what order should its values be tried?

‘Pj.: ‘PLE = Filtering: Can we detect inevitable failure early?

/\
“!J% “ﬂ% = Structure: Can we exploit the problem structure?

Forward Checking ([

NSW,

= |dea: Keep track of remaining legal values for unassigned
variables (using immediate constraints)

= |dea: Terminate when any variable has no legal values

S5

WA NT Q NSW \ SA T

CIECICIEC ICE ICEC 1O 1O 1O

Arc consistency

= Simplest form of propagation makes each pair of variables
consistent:

= X -Yis consistent iff for every value of X there is some allowed value of Y

R

WA NT
(w] S[FSe sEce] =]

Consistent!

10/8/2015

Constraint Propagation =

NSW,

Forward checking propagates information from assigned to adjacent
unassigned variables, but doesn't detect more distant failures:

S SSB S

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
= Constraint propagation repeatedly enforces constraints (locally)

Arc consistency

= Simplest form of propagation makes each pair of variables
consistent:

= X -Yis consistent iff for every value of X there is some allowed value of Y

e

NSW v sA T

WA NT
(] w[eewe sese] w]

Arc consistency

= Simplest form of propagation makes each pair of variables
consistent:

= X ->Yis consistent iff for every value of X there is some allowed value of Y

= When checking X =Y, throw out any values of X for which there isn’'t an
allowed value of Y

e

WA NT a NSW v sA T

[(mw] m[eewE XeEie] S[ESE]

= |f X loses a value, all pairs Z > X need to be rechecked

Arc consistency

= Simplest form of propagation makes each pair of variables
consistent:

= X ->Yis consistent iff for every value of X there is some allowed value of Y/

= When checking X =Y, throw out any values of X for which there isn’'t an
allowed value of Y

T4

WA NT Q NSW v sA T

(mmw] S[eews XEis] S[ESE]

= |f X loses a value, all pairs Z > X need to be rechecked

Arc consistency

= Simplest form of propagation makes each pair of variables
consistent:
= X ->Yis consistent iff for every value of X there is some allowed value of Y/

= When checking X =Y, throw out any values of X for which there isn’'t an
allowed value of Y

Cois St S
WA NT Q Nsw v SA T
[(w] m[eewE XxGE] S[ESE]
\«

= |f X loses a value, all pairs Z > X need to be rechecked

10/8/2015

Arc consistency

= Simplest form of propagation makes each pair of variables
consistent:
= X ->Yis consistent iff for every value of X there is some allowed value of Y/

= When checking X =Y, throw out any values of X for which there isn’'t an
allowed value of Y

4Lk

NT Q
(] s/eewe xxEE] S[Eis]
——

Arc consistency

= Simplest form of propagation makes each pair of variables
consistent:
= X -Yis consistent iff for every value of X there is some allowed value of Y

= When checking X =Y, throw out any values of X for which there isn’t an
allowed value of Y

R

NT Q SA T
(] S exEe] W&]
pa——

= Arc consistency detects failure earlier than forward checking
= Can be run before or after each assignment

Arc Consistency

function AC-3(csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables {X1, Xo, ..., X,}
local variables: gueue, a queue of arcs, initially all the arcs in csp
while gueue is not empty do

(Xi, X;) < REMOVE-FIRST(queuc)

if Ruevove-INCoNsISTENT-VaLuss(X;, X;) then

for each X in NuicHBoRs[Y]] do
add (X, Xi) to queue

function REMOVE-INCONSISTENT-VALUES(Y,, X)) returns true iff succeeds

removed — false
for each #in DOMAIN[X] do
if no value i in DOMAIN[X] allows (,5) to satisfy the constraint X; — X;
then delete © from DOMAIN[X]; removed — true

return removed

= Runtime: O(nd?), can be reduced to O(n?d?)
= ... but detecting all possible future problems is NP-hard — why?

Limitations of Arc Consistency

= After running arc

consistency: @

= Can have one solution left -
= Can have multiple solutions (i? om
left “ T
= Can have no solutions left .
(and not know it) <I I)
_ . |
What went

wrong here?

K-Consistency*

= Increasing degrees of consistency
= 1-Consistency (Node Consistency): Each O
single node’s domain has a value which
meets that node’s unary constraints
= 2-Consistency (Arc Consistency): For O =20
each pair of nodes, any consistent
assignment to one can be extended to

the other O

= K-Consistency: For each k nodes, any
consistent assignment to k-1 can be Q = O
extended to the kt" node. O

= Higher k more expensive to compute
= (You need to know the k=2 algorithm)

10/8/2015

Ordering: Minimum Remaining Values

= Minimum remaining values (MRV):
= Choose the variable with the fewest legal values

SSEs Sthe SN

= Why min rather than max?
= Also called “most constrained variable”
“Fail-fast” ordering

Ordering: Degree Heuristic

= Tie-breaker among MRV variables

= Degree heuristic:

= Choose the variable participating in the most
constraints on remaining variables

R R

= Why most rather than fewest constraints?

Ordering: Least Constraining Value

= Given a choice of variable:

= Choose the least constraining
value

= The one that rules out the fewest . ‘
values in the remaining variables
= Note that it may take some .
computation to determine this!
= Why least rather than most? ‘ E

= Combining these heuristics
makes 1000 queens feasible

Problem Structure

= Tasmania and mainland are @

independent subproblems
= Identifiable as connected @"
components of constraint graph

= Suppose each subproblem has c Q‘@

variables out of n total o
= Worst-case solution cost is
O((n/c)(de)), linear in n @

= Eg.,n=80,d=2¢c=20

= 280 = 4 billion years at 10 million
nodes/sec

= (4)(220) = 0.4 seconds at 10 million
nodes/sec

Tree-Structured CSPs

() (£)
[8)—0]
© (F)

= Choose a variable as root, order variables from root to
leaves such that every node's parent precedes it in the
ordering

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:

= Order: Choose a root variable, order variables so that parents precede
children

g R0

= Remove backward:
Fori=n:2, apply Removelnconsistent(Parent(X),X;)

= Assign forward:
Fori=1:n, assign X; consistently with Parent(X;)

= Runtime: O(n d?) (why?)

Nearly Tree-Structured CSPs

® ®
o ®
@‘@é@ - 5
© ©
® @

= Conditioning: instantiate a variable, prune its neighbors' domains

= Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

= Cutset size c gives runtime O((d®) (n-c) d?), very fast for small ¢

10/8/2015

Cutset Conditioning

lterative Algorithms for CSPs

= Greedy and local methods typically work with “complete”
states, i.e., all variables assigned

= To apply to CSPs:
= Allow states with unsatisfied constraints
= Operators reassign variable values

= Variable selection: randomly select any conflicted
variable

= Value selection by min-conflicts heuristic:
= Choose value that violates the fewest constraints
= le., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

2=

= States: 4 queens in 4 columns (44 = 256 states)
= Operators: move queen in column

= Goal test: no attacks

= Evaluation: h(n) = number of attacks

Performance of Min-Conflicts

= Given random initial state, can solve n-queens in almost constant time
for arbitrary n with high probability (e.g., n = 10,000,000)

= The same appears to be true for any randomly-generated CSP except
in a narrow range of the ratio

__number of constraints
number of variables

CPU|
time

T
critical
ratio

Summary

= CSPs are a special kind of search problem:
= States defined by values of a fixed set of variables
= Goal test defined by constraints on variable values

= Backtracking = depth-first search with one legal variable assigned per
node

= Variable ordering and value selection heuristics help significantly
= Forward checking prevents assignments that guarantee later failure

= Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

= The constraint graph representation allows analysis of problem structure
= Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice

Local Search

10/8/2015

Local Search

= Tree search keeps unexplored alternatives on the fringe
(ensures completeness)

= Local search: improve a single option until you can’t
make it better (no fringe!)

= New successor function: local changes

[o

19995

= Generally much faster and more memory efficient (but
incomplete and suboptimal)

Hill Climbing

= Simple, general idea:
= Start wherever

= Repeat: move to the best neighboring
state ay

= If no neighbors better than current, quit

= What's bad about this approach?

= Complete?
= Optimal?
= What's good about it? >
¢ - S

Hill Climbing Diagram

objective function lobal maximum

shoulder

local maximum
"flat" local maximum

ot S|
current pace

state

Hill Climbing

Objective Function

State Space

X A B CYD E z
Starting from X, where do you end up ?
Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing

= |dea: Escape local maxima by allowing downhill moves
= But make them rarer as time goes on

function SIMULATED-ANNEALING(problem. schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a "temperature” controlling prob. of downward steps

current — MAKE-NODE(INITIAL-STATE[problem])
for t— 1tooc do
T schedulelf]
if T'= 0 then return current
next—a randomly selected successor of current
AE— VALUE[next] = VALUE[currend]
if AE > 0 then current — next

else current — neat only with probability ¢ £/T

10/8/2015

Simulated Annealing Genetic Algorithms
. i : E(z)
-I:hgg;:)tr:(;?)! g,ztanLauTlt)ene p(z) o eFT [24748552] 24 o [Famsaain) [B27eess2|—{ 327442 |
| 32752411 23 29% | 24748552 24752411 24752411
= |f T decreased slowly enough,
will converge to optizqal sta%e' |z4415124% a7s5a11)\ [32752124 | —{ 3dBb2124
[s2543213] 11 e [2aa1g2a] [24415811 | 2441541

= |s this an interesting guarantee?

Fitness Selection Pairs Cross-Over =

= Sounds like magic, but reality is reality:

= The more downhill steps you need to escape a local = Genetic algorithms use a natural selection metaphor

optimum, the less Iikely you are to ever make them all = KeepbestN hypotheses at each step (selgction)_based on ? fitne5§ functi.on
inarow = Also have pairwise crossover operators, with optional mutation to give variety
- ,PeOple think hard abOUt_ ”dge operators which let you = Possibly the most misunderstood, misapplied (and even maligned)
jump around the space in better ways technique around
- I H
Example: N-Queens GA'’s for Locomotion

Ever wonder what it would be like
to see evolution happening
right before your eyes?

= Why does crossover make sense
here?

= When wouldn’t it make sense?
= What would mutation be?
= What would a gOOd fitness function be? Hod Lipson’s Creative Machines Lab @ Cornell

