
10/8/2015

1

CSE 473: Artificial Intelligence
Autumn 2015

Heuristic Search and A* Algorithms
Steve Tanimoto

With slides from :
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Today
 A* Search
 Heuristic Design
 Graph search

Recap: Search
 Search problem:

 States (configurations of the world)
 Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
 Start state and goal test

 Search tree:
 Nodes: represent plans for reaching states
 Plans have costs (sum of action costs)

 Search Algorithm:
 Systematically builds a search tree
 Chooses an ordering of the fringe (unexplored nodes)

Example: Pancake Problem

Cost: Number of pancakes flipped

Action: Flip over the
top n pancakes

Example: Pancake Problem Example: Pancake Problem

3

2
4

3

3

2

2

2
4

State space graph with costs as weights

3
4

3
4

2

3

10/8/2015

2

General Tree Search

Action: flip top
two

Cost: 2
Action: flip all four

Cost: 4Path to reach goal:
Flip four, flip three

Total cost: 7

Example: Heuristic Function
Heuristic: the largest pancake that is still out of place

4
3

0

2

3

3
3

4

4
3

4

4

4

h(x)

What is a Heuristic?
 An estimate of how close a state is to a goal
 Designed for a particular search problem

10
5

11.2

 Examples: Manhattan distance: 10+5 = 15
Euclidean distance: 11.2

Example: Heuristic Function

h(x)

Greedy Search Best First (Greedy)
 Strategy: expand a node that you think is closest to a goal state

 Heuristic: estimate of distance to nearest goal for each state
 A common case:

 Best-first takes you straight to the (wrong) goal
 Worst-case: like a badly-guided DFS

… b

… b

10/8/2015

3

Greedy Search
 Expand the node that seems closest…

 What can go wrong?

A* Search

Combining UCS and Greedy
 Uniform-cost orders by path cost, or backward cost g(n)
 Greedy orders by goal proximity, or forward cost h(n)

 A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2
1

8

1
1

2
h=6 h=0
c

h=7

3
e h=11

Example: Teg Grenager

S
a

b

c

ed

dG

G

g = 0 h=6
g = 1 h=5

g = 2 h=6

g = 3 h=7

g = 4 h=2
g = 6 h=0

g = 9 h=1

g = 10 h=2

g = 12
h=0

 Should we stop when we enqueue a goal?
When should A* terminate?

S
B

A
G

2

3

2

2
h = 1

h = 2

h = 0
h = 3

 No: only stop when we dequeue a goal

Is A* Optimal?
A

GS

1
3h = 6

h = 0

5
h = 7

 What went wrong?
 Actual bad goal cost < estimated good path cost
 We need estimates to be less than or equal to actual costs!

Admissible Heuristics
 A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

4 15
 Examples:

 Coming up with admissible heuristics is most of
what’s involved in using A* in practice.

10/8/2015

4

Optimality of A* Tree Search
Assume:
 A is an optimal goal node
 B is a suboptimal goal node
 h is admissible
Claim:
 A will exit the fringe before B

…

Optimality of A* Tree Search
Proof:
 Imagine B is on the fringe
 Some ancestor n of A is on the fringe, too (maybe A!)
 Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
Definition of f-cost
Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search
Proof:
 Imagine B is on the fringe
 Some ancestor n of A is on the fringe, too (maybe A!)
 Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

B is suboptimal
h = 0 at a goal

…

Optimality of A* Tree Search
Proof:
 Imagine B is on the fringe
 Some ancestor n of A is on the fringe, too (maybe A!)
 Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

 All ancestors of A expand before B
 A expands before B
 A* search is optimal

…

UCS vs A* Contours
 Uniform-cost expanded

in all directions

 A* expands mainly
toward the goal, but
hedges its bets to
ensure optimality

Start Goal

Start Goal

Which Algorithm?
 Uniform cost search (UCS):

10/8/2015

5

Which Algorithm?
 A*, Manhattan Heuristic:

Which Algorithm?
 Best First / Greedy, Manhattan Heuristic:

Creating Admissible Heuristics
 Most of the work in solving hard search problems

optimally is in coming up with admissible heuristics
 Often, admissible heuristics are solutions to relaxed

problems, where new actions are available

 Inadmissible heuristics are often useful too

15
366

Creating Heuristics

 What are the states?
 How many states?
 What are the actions?
 What states can I reach from the start state?
 What should the costs be?

8-puzzle:

8 Puzzle I
 Heuristic: Number of

tiles misplaced

 h(start) = 8
Average nodes expanded when
optimal path has length…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106
TILES 13 39 227

 Is it admissible?

8 Puzzle II
 What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
 Total Manhattan distance
 h(start) = 3 + 1 + 2 + …

= 18 Average nodes expanded when
optimal path has length…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73 Admissible?

10/8/2015

6

8 Puzzle III
 How about using the actual cost as a

heuristic?
 Would it be admissible?
 Would we save on nodes expanded?

 What’s wrong with it?
 With A*: a trade-off between quality of

estimate and work per node!

Trivial Heuristics, Dominance
 Dominance: ha ≥ hc if

 Heuristics form a semi-lattice:
 Max of admissible heuristics is admissible

 Trivial heuristics
 Bottom of lattice is the zero heuristic (what

does this give us?)
 Top of lattice is the exact heuristic

A* Applications
 Pathing / routing problems
 Resource planning problems
 Robot motion planning
 Language analysis
 Machine translation
 Speech recognition
 …

Tree Search: Extra Work!
 Failure to detect repeated states can cause

exponentially more work. Why?

Graph Search
 In BFS, for example, we shouldn’t bother

expanding some nodes (which, and why?)
S

a
b

d p

a
c

e

p
h

f
r

q
q c G

a

qe

p
h

f
r

q
q c G

a

Graph Search
 Idea: never expand a state twice
 How to implement:

 Tree search + set of expanded states (“closed set”)
 Expand the search tree node-by-node, but…
 Before expanding a node, check to make sure its state has never

been expanded before
 If not new, skip it, if new add to closed set

 Hint: in python, store the closed set as a set, not a list
 Can graph search wreck completeness? Why/why not?
 How about optimality?

10/8/2015

7

A* Graph Search Gone Wrong

S
A

B

C

G

1

1
1

2 3
h=2

h=1

h=4
h=1

h=0

S (0+2)
A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

S
A

B

C

G

State space graph Search tree

Consistency of Heuristics
 Main idea: estimated heuristic costs ≤ actual costs

 Admissibility: heuristic cost ≤ actual cost to goal
h(A) ≤ actual cost from A to G

 Consistency: heuristic “arc” cost ≤ actual cost for each arc
h(A) – h(C) ≤ cost(A to C)

 Consequences of consistency:
 The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)
f(A) = g(A) + h(A) ≤ g(A) + cost(A to C) + h(C) = f(C)
 A* graph search is optimal

3

A
C

G

h=4 h=11
h=2 h=3

Optimality of A* Graph Search
 Sketch: consider what A* does with a consistent heuristic:

 Nodes are popped with non-decreasing f-scores: for all n, n’ with n’ popped after n : f(n’) ≥ f(n)
 Proof by induction: (1) always pop the lowest f-score from the fringe, (2) all new nodes have larger (or equal) scores, (3) add them to the fringe, (4) repeat!

 For every state s, nodes that reach s optimally are expanded before nodes that reach s sub-optimally
 Result: A* graph search is optimal

…

f ≤ 3
f ≤ 2

f ≤ 1

Optimality
 Tree search:

 A* optimal if heuristic is admissible (and non-negative)
 UCS is a special case (h = 0)

 Graph search:
 A* optimal if heuristic is consistent
 UCS optimal (h = 0 is consistent)

 Consistency implies admissibility
 In general, natural admissible heuristics tend to be consistent, especially if from relaxed problems

Summary: A*
 A* uses both backward costs and

(estimates of) forward costs
 A* is optimal with admissible / consistent

heuristics
 Heuristic design is key: often use relaxed

problems

