CSE 473: Artificial Intelligence

Markov Decision Processes (MDPs)

Hanna Hajishirzi

Many slides over the course adapted from Luke Zettlemoyer,
Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore

Recap: Defining MDPs

= Markov decision processes:
= States S
Start state s,

= Actions A
* Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discount vy)

= MDP quantities so far:
» Policy = Choice of action for each state
= Utility (or return) = sum of discounted rewards

Optimal Utilities

= Define the value of a state s:
V'(s) = expected utility starting in s
and acting optimally

= Define the value of a g-state
(s,a):
Q'(s, az(expected utility starting in

s, taking action a and thereatfter .
actlng optimally "

= Define the optimal policy:
nt (s) = optimal action from state s

The Bellman Equations

= Definition of “optimal utility” leads to a
simple one-step lookahead relationship
amongst optimal utility values:

= Expected utility under optimal action
= Average sum of (discounted) rewards "\
= This is just what expectimax does ’

= Formally:
V*(s) = max Q*(s,a)
Q*(s,a) = ZT(S a,s) [R(s a,s’) —I—ny*(s’)]

V*(s) = maXZT(s a,s) [R(s a,s’) —I—'yV*(s’)]

Solving MDPs

= Find V*(s) for all the states in S
* |S| non-linear equations with |S| unknown

V*i(s) = maaXZT(s, a,s) [R(s,a, s + ’YV*(S/)}
= Qur proposal:
= Dynamic programming
» Define V*i(s) as the optimal value of s if game
ends in | steps

» \V*0(s)=0 for all the states

Viii(s) = maXZT s,a,8') |R(s,a,s") +~Vi(s")]

Example: v=0.9, living
reward=0, noise=0.2

VALUES AFTER 0 ITERATIONS

VALUES AFTER 1 ITERATIONS

VALUES AFTER 2 ITERATIONS

Example: v=0.9, living
reward=0, noise=0.2

Example: Bellman Updates

3 O 0 G—" +1 | 3 ? 2 2 +1
Vo2]| O 0 =7 2 2 o = Vi
1 0 0 0 0 1 ? ? ? ?
1 3 4 1 2 3 4
Viii(s) = maXZT s,a,s) |R(s,a,s") —|—fy‘/;(s’)}: max (Q;11(s,a)

Q1((3,3),right) = ZT (3, 3), right, s") [R({S,S),right,s’) +fy‘/;(s’)}

S/

= 0.8%[0.0 4 0.9 % 1.0] 0.1 % [0.0 + 0.9 % 0.0] + 0.1 [0.0 + 0.9 * 0.0]

Example: Value lteration

V1 V2
s | o | | o 3
2 O -1 2) -1
o|lo|lo]o| *J]o|lo]ofo

* [Information propagates outward from terminal
states and eventually all states have correct
value estimates

VALUES AFTER 3 ITERATIONS

VALUES AFTER 4 ITERATIONS

VALUES AFTER 5 ITERATIONS

VALUES AFTER 6 ITERATIONS

VALUES AFTER 7 ITERATIONS

Value Estimates

= Calculate estimates V, (s)

= The optimal value considering
only next k time steps (k rewards)

= As k — o, It approaches the
optimal value

= Why:
= |[f discounting, distant rewards
become negligible

= |f terminal states reachable from
everywhere, fraction of episodes
not ending becomes negligible

= Otherwise, can get infinite expected
utility and then this approach
actually won’t work <

Why Not Search Trees?

= Why not solve with expectimax?

= Problems:
= This tree is usually infinite (why?)
= Same states appear over and over (why?)
= We would search once per state (why?)

.
»

= |dea: Value iteration

= Compute optimal values for all states all at
once using successive approximations

= Will be a bottom-up dynamic program
similar in cost to memoization

* Do all planning offline, no replanning
needed! e

Computing time limited values

=158
=

e bt e e e b b

AU UL A L AU UL VO Y |

DOV FOMNEEORE DA THEMETRIE TN T

B
g
=
¢
=
L

Vo(@) Vo(@) Vo(4s)

Example of Value iteration

Overheated

Assume no discount!

V“[o9 0 J Viega(5) © max ST (s, a, o) [Rs,0,9) + 1 Vo)

Value lteration

= |dea:
= Start with V,(s) = 0, which we know is right (why?)
= Given V/, calculate the values for all states for depth i+1:

Vit1(s) « maaXZT(s, a,s) [R(S, a,s) + ’)/V;'(S/)}

S

= This is called a value update or Bellman update
= Repeat until convergence

= Theorem: will converge to unique optimal values
» Basic idea: approximations get refined towards optimal values
* Policy may converge long before values do

Convergence

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,,, can be viewed as depth k
+1 expectimax results in nearly identical search trees

* The difference is that on the bottom layer, V,,, has actual
rewards while V, has zeros

" That last layer is at best all R,

" |tisatworst Ry, / \ /

= But everything is discounted by y* that far out
= SoV,andV,,, are at most Y max|R| different
= So as k increases, the values converge

Value lteration Complexity

= Problem size:
= |A| actions and |S| states

= Fach lteration
= Computation: O(|A]-|S|?)
= Space: O(|S|)

= Num of iterations
= Can be exponential in the discount factor y

Computing Actions from Values

‘II!I!HIIIIHIHHII'IHIHHII
0.81 0.68
A
|IHIHHII

HIHIHHIIHIHIHHII

VALUES AFTER 100 ITERATIONS

Computing Actions from Values

Computing Actions from Values

= \Which action should we chose from state s:
= Given optimal values Q7

arg max Q*(s, a)
a

= Given optimal values V?

argmax >y T(s,a,s)[R(s,a,s") +~yV*(s")]
a !/

S

= | esson: actions are easier to select from Q’s!

Aside: Q-Value lteration

= Value iteration: find successive approx optimal values
= Start with V,(s) =0
= Given V/, calculate the values for all states for depth i+1:

Vi—i—l(s) — maaXZT(s,a, s") [R(s,a, s + 'y\/;;(s/)]

= But Q-values are more useful!
= Start with Q,(s,a) =0
= Given Q/, calculate the g-values for all g-states for depth i+1:

Qit1(s,0) = Y T(s,a,5) |R(s,a,5) + 7 maxQu(s/,a)

a

Example: Value lteration

VALUES AFTER 0 ITERATIONS

27

Outline

» Markov Decision Processes (MDPs)
*MDP formalism
=Value Iteration
=Policy lteration

» Reinforcement Learning (RL)
= Relationship to MDPs
=Several learning algorithms

Utilities for Fixed Policies

= Another basic operation:
compute the utility of a state s
under a fix (general non-optimal)

policy
= Define the utility of a state s,
under a fixed policy m:

V7(s) = expected total discounted

rewards (return) starting in s and
following

= Recursive relation (one-step
look-ahead / Bellman equation):

VT(s) = T(s,m(s),s)[R(s,m(s),s) + V" (s")]

Policy Evaluation

Always Go Right Always Go Forward

100.00 -10.00 100.00 -10.00
-~
70.20

-10.00
o~

-7.88 »|| -10.00 -10.00

-8.69 »|| -10.00 -10.00

Policy Evaluation

= How do we calculate the V's for a fixed policy?

= |dea one: modify Bellman updates
Voi(s) =0
Vi1(s) — > T(s,n(s),s)[R(s,m(s),s") +~vV](s)]

= |dea two: it's just a linear system, solve with
Matlab (or whatever)

Policy lteration

= Problem with value iteration:

» Considering all actions each iteration is slow: takes |A|
times longer than policy evaluation

= But policy doesn’t change each iteration, time wasted

= Alternative to value iteration:

= Step 1: Policy evaluation: calculate utilities for a fixed
policy (not optimal utilities!) until convergence (fast)

» Step 2: Policy improvement: update policy using one-
step lookahead with resulting converged (but not
optimal!) utilities (slow but infrequent)

= Repeat steps until policy converges

Policy lteration

= Policy evaluation: with fixed current policy n, find values
with simplified Bellman updates
= [terate until values converge

Vitk, (s) < Y T(s,mp(s), 8) |R(s,mi(s),8') +~ V™ (s

= Note: could also solve value equations with other techniques
= Policy improvement: with fixed utilities, get a better policy

= find the best action according to one-step look-ahead
Tp+1(s) = arg maxZT(s, a,s) {R(S, a,s’) + WVW’C(SI)}

S

Policy lteration Complexity

= Problem size:
= |A| actions and |S| states

= Fach lteration
= Computation: O(|S|° + |A]-|S|?)
= Space: O(|S])

= Num of iterations
= Unknown, but can be faster in practice
= Convergence is guaranteed

Comparison

= |n value iteration:

= Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (possibly implicitly, based on
current policy)

= |n policy iteration:
» Several passes to update utilities with frozen policy
= After a policy is evaluated, a new policy is chosen
= The new policy is better (or we are done)

= Hybrid approaches (asynchronous policy iteration):

» Any sequences of partial updates to either policy entries or
utilities will converge if every state is visited infinitely often

Summary: MDP Algorithms

So you want to

= Compute opimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation

= Turn your values into a policy: use policy extraction (one-step
lookahead)

" These all look the same!
They basically are — they are all variations of Bellman updates
They all use one-step lookahead expectimax fragments
They differ only in whether we plug in a fixed policy or max
over actions

