CSE 473: Artificial Intelligence

Markov Decision Processes (MDPs)

Hanna Hajishirzi

Many slides over the course adapted from Luke Zettlemoyer,
Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore

Outline (roughly next two weeks)

» Markov Decision Processes (MDPs)
*MDP formalism
=Value Iteration
=Policy lteration

» Reinforcement Learning (RL)
= Relationship to MDPs
=Several learning algorithms

Non-deterministic Search

= Noisy execution of actions

» Deterministic grid world vs. non-deterministic
grid world

Example: Grid World

A maze-like problem:

= The agent lives in a grid

= Walls block the agent’s path

The agent’s actions do not always go as
planned:

= 80% of the time, the action North takes
the agent North
(if there is no wall there)

= 10% of the time, North takes the agent
West: 10% East

= |f there is a wall in the direction the
agent would have been taken, the
agent stays put

Agent receives rewards each time step:
= Small “living” reward each step

= Big rewards come at the end

Goal: maximize sum of rewards

3

2

1

START

+1

Grid World Actions

Deterministic Stochastic
0.8

E = m =

*

Review: Expectimax

= \What if we don’t know what the

result of an action will be? E.g.,
= |n solitaire, next card is unknown
* |n minesweeper, mine locations max
*= |n pacman, the ghosts act randomly

= (Can do expectimax search

= Chance nodes, like min nodes, chance
except the outcome is uncertain

= Calculate expected utilities

= Max nodes as in minimax
search

= Chance nodes take average 10 4 5 7
(expectation) of value of children

= Today, we'll learn how to formalize
the underlying problem as a
Markov Decision Process

Markov Decision Processes

= An MDP is defined by:

= Asetofstatess& S
= AsetofactionsacA

A transition function T(s,a,s’)
= Prob that a from s leads to s’
" j.e., P(s’|s,a)
= Also called the model
A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)
A start state (or distribution)
Maybe a terminal state

MDPs: non-deterministic
search problems
= Reinforcement learning: MDPs

where we don’t know the
transition or reward functions

START

0.8

0.1 0.1

What is Markov about MDPs?

= Andrey Markov (1856-1922)

= “Markov” generally means that given
the present state, the future and the
past are independent

= For Markov decision processes,
“Markov” means:

P(St—l—l = 8’\515 = 54, Ay = ag, Se—1 = S¢—1, Ap—1,...50 = 80)

P(St—l—l = S’|St = 54, Ay = at)

= This is just like search where the
successor function only depends on the
current state (not the history)

Solving MDPs

* |n deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal

= |n an MDP, we want an optimal policy *: S — A
= A policy &t gives an action for each state

= An optimal policy maximizes expected utility if followed
= Defines a reflex agent

3 @ Optimal

= Expectimax didn’t | | A
compute the entire policy, f b | = 003 for al
= |t computed the action _ terminals s

for a single state onIy1 f

o™
o <
o N
I I
—_ A~
0 =
0 e
-
S S
o 1

1

I y
O =
Y

Example Optimal Policies

Another Example: Racing Car

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward

10 Overheated

acing Car Search Tree

MDP Search Trees

= Each MDP state gives an expectimax-like search tree

~
~

(s,a)is a <
q-state

\ r—} (s,a,s’) called a transition
: ’ T(s,a,s’) = P(s'[s,a)

" s,a,s
R(s,a,s’)

Utilities of Sequences

= What preference should an agent have
over reward sequences?

= More or less:
" [1, 2, 2] or [2, 3, 4]

= Now or later:
»[0,0,1 or [1,0,0]

Discounting

= |t s reasonable to maximize the sum of rewards

* |t also makes sense to prefer rewards now to
rewards later

= One solution: value of rewards decay
exponentially

Worth now Worth in one step Worth in2two step
1 Y ¥

Discounting

= How to discount?

= Each time we descend, we "
multiply in the discountonce | ~
= Why discount? 7
= Sooner rewards probably do _
have higherutility than later
rewards T
= Also helps our algorithms -
converge ~
= Example: discount of 0.5 N2 <
« U1, 2,3])=1*1+.52+ 25*3 [7

= U([1,2,3])<U([3,2,1])

Discounting

U(lro,---To0]) = Y 71t < Rmax/(1 —7)
t=0 _

= Typically discount 1<
rewards by y < 1
each time step

= Sooner rewards
have higher utility
than later rewards =

= Also helps the
algorithms converge ~2 <

Quiz: Discounting

Given: 10 i |

a b C d e
= Actions: East, West, and Exit (only available in exit states a, e)

= Transitions: deterministic

Quiz 1: For y =1, what is the optimal policy? 10

Quiz 2: Fory = 0.1, what is the optimal policy? 10

Quiz 3: For which ° are West and East equally good when in state d?

Utilities of Sequences

* |n order to formalize optimality of a policy, need to
understand utilities of sequences of rewards

= Typically consider stationary preferences:

[T7 o, T1, 72, - -] ~ [’I”, TIO) T{]_a 7J27 .-]
<~

[ro,r1,72,...] = [rg,r1, 75,]

= Only two ways to define stationary utilities
= Additive utility:
U([rg,71,72,...]) =ro+7r1+7m0+ -

= Discounted utility:
U([To,?“l,rg, ..]) =1rg+Yr1 + 727“2 e

Infinite Utilities”!

Problem: what if the game lasts forever?
» |nfinite state sequences have infinite rewards

Solutions: ~|=| ==
= Finite horizon: ! ==
= Terminate episodes after a fixed T steps (e.qg. life) ==

= Gives nonstationary policies (t depends on time left)

» Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached (like “overheated” for racing)

= Discounting: forO <y <1

U(lro,---mo0]) = Y 71t < Rmax/(1 —7)
t=0

= Smaller y means smaller “horizon” — shorter term focus

Recap: Defining MDPs

= Markov decision processes:
= States S
Start state s,

= Actions A
* Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discount vy)

= MDP quantities so far:
» Policy = Choice of action for each state
= Utility (or return) = sum of discounted rewards

Solving MDPs

= \We want to find the optimal policy «t*:

» Find best action for each state such that it maximizes
Utility (or return) = sum of discounted rewards

Optimal Utilities

= Define the value of a state s:
V'(s) = expected utility starting in s
and acting optimally

= Define the value of a g-state
(s,a):
Q'(s, az(expected utility starting in

s, taking action a and thereatfter .
actlng optimally "

= Define the optimal policy:
nt (s) = optimal action from state s

0.77 |« 0.73 |4« 0.70

VALUES AFTER 100 ITERATIONS

The Bellman Equations

= Definition of “optimal utility” leads to a
simple one-step lookahead relationship
amongst optimal utility values:

= Expected utility under optimal action
= Average sum of (discounted) rewards "\
= This is just what expectimax does ’

= Formally:
V*(s) = max Q*(s,a)
Q*(s,a) = ZT(S a,s) [R(s a,s’) —I—ny*(s’)]

V*(s) = maXZT(s a,s) [R(s a,s’) —I—'yV*(s’)]

Racing Car Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever

= |dea: Do a depth-limited
computation, but with increasing
depths until change is small

= Note: deep parts of the tree
eventually don’t matterify<1

Time Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in kK more time steps

= Equivalently, it’s what a depth-k expectimax would give from s

