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Markov Decision Processes (MDPs)
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Many slides over the course adapted from Luke Zettlemoyer,
Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore



Outline (roughly next two weeks)

» Markov Decision Processes (MDPs)
*MDP formalism
=Value Iteration
=Policy lteration

» Reinforcement Learning (RL)
= Relationship to MDPs
=Several learning algorithms



Non-deterministic Search

= Noisy execution of actions

» Deterministic grid world vs. non-deterministic
grid world



Example: Grid World

A maze-like problem:

= The agent lives in a grid

= Walls block the agent’s path

The agent’s actions do not always go as
planned:

= 80% of the time, the action North takes
the agent North
(if there is no wall there)

= 10% of the time, North takes the agent
West: 10% East

= |f there is a wall in the direction the
agent would have been taken, the
agent stays put

Agent receives rewards each time step:
= Small “living” reward each step

= Big rewards come at the end

Goal: maximize sum of rewards
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Grid World Actions
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Review: Expectimax

= \What if we don’t know what the

result of an action will be? E.g.,
= |n solitaire, next card is unknown
* |n minesweeper, mine locations max
*= |n pacman, the ghosts act randomly

= (Can do expectimax search

= Chance nodes, like min nodes, chance
except the outcome is uncertain

= Calculate expected utilities

= Max nodes as in minimax
search

= Chance nodes take average 10 4 5 7
(expectation) of value of children

= Today, we'll learn how to formalize
the underlying problem as a
Markov Decision Process



Markov Decision Processes

= An MDP is defined by:

= Asetofstatess& S
= AsetofactionsacA

A transition function T(s,a,s’)
= Prob that a from s leads to s’
" j.e., P(s’|s,a)
= Also called the model
A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)
A start state (or distribution)
Maybe a terminal state

MDPs: non-deterministic
search problems
= Reinforcement learning: MDPs

where we don’t know the
transition or reward functions
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What is Markov about MDPs?

= Andrey Markov (1856-1922)

= “Markov” generally means that given
the present state, the future and the
past are independent

= For Markov decision processes,
“Markov” means:

P(St—l—l = 8’\515 = 54, Ay = ag, Se—1 = S¢—1, Ap—1,...50 = 80)

P(St—l—l = S’|St = 54, Ay = at)

= This is just like search where the
successor function only depends on the
current state (not the history)



Solving MDPs

* |n deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal

= |n an MDP, we want an optimal policy *: S — A
= A policy &t gives an action for each state

= An optimal policy maximizes expected utility if followed
= Defines a reflex agent

3 @ Optimal

= Expectimax didn’t | | A
compute the entire policy, f b | = 003 for al
= |t computed the action _ terminals s

for a single state onIy1 f
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Example Optimal Policies



Another Example: Racing Car

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward

10 Overheated



acing Car Search Tree




MDP Search Trees

= Each MDP state gives an expectimax-like search tree

~
~

(s,a)is a <
q-state

\ r—} (s,a,s’) called a transition
: ’ T(s,a,s’) = P(s'[s,a)

" s,a,s
R(s,a,s’)




Utilities of Sequences

= What preference should an agent have
over reward sequences?

= More or less:
" [1, 2, 2] or [2, 3, 4]

= Now or later:
»[0,0,1 or [1,0,0]



Discounting

= |t s reasonable to maximize the sum of rewards

* |t also makes sense to prefer rewards now to
rewards later

= One solution: value of rewards decay
exponentially

Worth now Worth in one step Worth in2two step
1 Y ¥




Discounting

= How to discount?

= Each time we descend, we "
multiply in the discountonce | ~
= Why discount? 7
= Sooner rewards probably do _
have higherutility than later
rewards T
= Also helps our algorithms -
converge ~
= Example: discount of 0.5 N2 <
« U1, 2,3])=1*1+.52+ 25*3 [ 7

= U([1,2,3])<U([3,2,1])



Discounting

U(lro,---To0]) = Y 71t < Rmax/(1 —7)
t=0 _

= Typically discount 1<
rewards by y < 1
each time step

= Sooner rewards
have higher utility
than later rewards =

= Also helps the
algorithms converge ~2 <




Quiz: Discounting

Given: 10 i |

a b C d e
= Actions: East, West, and Exit (only available in exit states a, e)

= Transitions: deterministic

Quiz 1: For y =1, what is the optimal policy? 10

Quiz 2: Fory = 0.1, what is the optimal policy? 10

Quiz 3: For which ° are West and East equally good when in state d?



Utilities of Sequences

* |n order to formalize optimality of a policy, need to
understand utilities of sequences of rewards

= Typically consider stationary preferences:

[T7 o, T1, 72, - - ] ~ [’I”, TIO) T{]_a 7J27 .- ]
<~

[ro,r1,72,...] = [rg,r1, 75, ]

= Only two ways to define stationary utilities
= Additive utility:
U([rg,71,72,...]) =ro+7r1+7m0+ -

= Discounted utility:
U([To,?“l,rg, .. ]) =1rg+Yr1 + 727“2 e



Infinite Utilities”!

Problem: what if the game lasts forever?
» |nfinite state sequences have infinite rewards

Solutions: ~|=| ==
= Finite horizon: ! ==
= Terminate episodes after a fixed T steps (e.qg. life) ==

= Gives nonstationary policies (t depends on time left)

» Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached (like “overheated” for racing)

= Discounting: forO <y <1

U(lro,---mo0]) = Y 71t < Rmax/(1 —7)
t=0

= Smaller y means smaller “horizon” — shorter term focus




Recap: Defining MDPs

= Markov decision processes:
= States S
Start state s,

= Actions A
* Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discount vy)

= MDP quantities so far:
» Policy = Choice of action for each state
= Utility (or return) = sum of discounted rewards



Solving MDPs

= \We want to find the optimal policy «t*:

» Find best action for each state such that it maximizes
Utility (or return) = sum of discounted rewards



Optimal Utilities

= Define the value of a state s:
V'(s) = expected utility starting in s
and acting optimally

= Define the value of a g-state
(s,a):
Q'(s, az( expected utility starting in

s, taking action a and thereatfter .
actlng optimally "

= Define the optimal policy:
nt (s) = optimal action from state s



0.77 |« 0.73 |4« 0.70
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The Bellman Equations

= Definition of “optimal utility” leads to a
simple one-step lookahead relationship
amongst optimal utility values:

= Expected utility under optimal action
= Average sum of (discounted) rewards "\
= This is just what expectimax does ’

= Formally:
V*(s) = max Q*(s,a)
Q*(s,a) = ZT(S a,s) [R(s a,s’) —I—ny*(s’)]

V*(s) = maXZT(s a,s) [R(s a,s’) —I—'yV*(s’)]



Racing Car Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever

= |dea: Do a depth-limited
computation, but with increasing
depths until change is small

= Note: deep parts of the tree
eventually don’t matterify<1




Time Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in kK more time steps

= Equivalently, it’s what a depth-k expectimax would give from s




