
CSE 473: Artificial Intelligence
Spring 2014

Hanna Hajishirzi
Problem Spaces and Search

slides from 	

Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer	

Outline
§  Agents that Plan Ahead

§  Search Problems

§  Uninformed Search Methods (part review for some)
§  Depth-First Search
§  Breadth-First Search
§  Uniform-Cost Search

§  Heuristic Search Methods (new for all)
§  Best First / Greedy Search

Review: Agents

Search -- the environment is:
fully observable, single agent, deterministic, static,
discrete

Agent

Sensors

?

Actuators

E
nvironm

ent

Percepts

Actions

An	
 agent:	

•  Perceives	
 and	
 acts	

•  Selects	
 ac2ons	
 that	
 maximize	

its	
 u2lity	
 func2on	

•  Has	
 a	
 goal	

	

Environment:	

•  Input	
 and	
 output	
 to	
 the	
 agent	

	

Reflex Agents

§  Reflex agents:
§  Choose action based

on current percept (and
maybe memory)

§  Do not consider the
future consequences of
their actions

§  Act on how the world IS
§  Can a reflex agent

achieve goals?

Goal Based Agents

§  Goal-based agents:
§  Plan ahead
§  Ask “what if”
§  Decisions based on

(hypothesized)
consequences of
actions

§  Must have a model of
how the world evolves
in response to actions

§  Act on how the world
WOULD BE

Search thru a

§  Set of states
§  Successor Function [and costs - default to 1.0]
§  Start state
§ Goal state [test]

• Path: start ⇒ a state satisfying goal test
•  [May require shortest path]
•  [Sometimes just need state passing test]

•  Input:

• Output:

Problem Space / State Space

Example: Simplified Pac-Man
§  Input:

§  A state space

§  A successor function

§  A start state

§  A goal test

§  Output:

“N”, 1.0

“E”, 1.0

Ex: Route Planning: Romania à Bucharest

§  Input:
§  Set of states

§  Operators [and costs]

§  Start state

§  Goal state (test)

§  Output:

Example: N Queens

§  Input:
§  Set of states

§ Operators [and costs]

§  Start state

§ Goal state (test)

§  Output

Q

Q

Q

Q

Algebraic Simplification

§  Input:
§  Set of states

§  Operators [and costs]

§  Start state

§  Goal state (test)

§ Output:

What is in State Space?

§  A world state includes every details of the environment

What’s#in#a#State#Space?#

!  Problem:#Pathing#
!  States:#(x,y)#loca)on#
!  Ac)ons:#NSEW#
!  Successor:#update#loca)on#

only#
!  Goal#test:#is#(x,y)=END#

!  Problem:#EatJAllJDots#
!  States:#{(x,y),#dot#booleans}#
!  Ac)ons:#NSEW#
!  Successor:#update#loca)on#

and#possibly#a#dot#boolean#
!  Goal#test:#dots#all#false#

The#world#state#includes#every#last#detail#of#the#environment#

A#search#state#keeps#only#the#details#needed#for#planning#(abstrac)on)#

§  A search state includes only details needed for planning
Problem: Pathing Problem: Eat-all-dots

States: {x,y} locations
Actions: NSEW moves
Successor: update location
Goal: is (x,y) End?

States: {(x,y), dot booleans}
Actions: NSEW moves
Successor: update location
and dot boolean
Goal: dots all false?

State Space Sizes?

§  World states:

§  Pacman positions:
 10 x 12 = 120

§  Pacman facing:
 up, down, left, right

§  Food Count: 30
§  Ghost positions: 12

State Space Sizes?

§  How many?
§  World State:

§  States for Pathing:

§  States for eat-all-dots:

120*(230)*(122)*4

120

120*(230)

Quiz:#Safe#Passage#

!  Problem:#eat#all#dots#while#keeping#the#ghosts#permaJscared#
!  What#does#the#state#space#have#to#specify?#

!  (agent#posi)on,#dot#booleans,#power#pellet#booleans,#remaining#scared#)me)#

State Space Graphs

§  State space graph:
§  Each node is a state
§  The successor function

is represented by arcs
§  Edges may be labeled

with costs
§  We can rarely build this

graph in memory (so we
don’t)

State#Space#Graphs#

!  State#space#graph:#A#mathema)cal#
representa)on#of#a#search#problem#
!  Nodes#are#(abstracted)#world#configura)ons#
!  Arcs#represent#successors#(ac)on#results)#
!  The#goal#test#is#a#set#of#goal#nodes#(maybe#only#one)#

!  In#a#search#graph,#each#state#occurs#only#once!#

!  We#can#rarely#build#this#full#graph#in#memory#
(it’s#too#big),#but#it’s#a#useful#idea#

#

Search Trees

§  A search tree:
§  Start state at the root node
§  Children correspond to successors
§  Nodes contain states, correspond to PLANS to those states
§  Edges are labeled with actions and costs
§  For most problems, we can never actually build the whole tree

“E”, 1.0 “N”, 1.0

Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r

State Graph:

What is the search tree?

Ridiculously tiny search graph
for a tiny search problem

State Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in the
search tree is an entire
PATH in the problem
graph.

States vs. Nodes
§  Nodes in state space graphs are problem states

§  Represent an abstracted state of the world
§  Have successors, can be goal / non-goal, have multiple predecessors

§  Nodes in search trees are plans
§  Represent a plan (sequence of actions) which results in the node’s

state
§  Have a problem state and one parent, a path length, a depth & a cost
§  The same problem state may be achieved by multiple search tree

nodes

Depth 5

Depth 6

Parent

Node

Search Nodes
Problem States

Action

Quiz:#State#Graphs#vs.#Search#Trees#

S G

b

a

Consider#this#4Jstate#graph:##

Important:#Lots#of#repeated#structure#in#the#search#tree!#

How#big#is#its#search#tree#(from#S)?#

Building Search Trees

§  Search:
§  Expand out possible plans
§ Maintain a fringe of unexpanded plans
§  Try to expand as few tree nodes as possible

General Tree Search

§  Important ideas:
§  Fringe
§  Expansion
§  Exploration strategy

§  Main question: which fringe nodes to explore?

Detailed pseudocode is
in the book!

