CSE 473: Artificial Intelligence
Spring 2014

Hanna Hajishirzi
Problem Spaces and Search

slides from
Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer

Outline

= Agents that Plan Ahead

= Search Problems

= Uninformed Search Methods (part review for some)
= Depth-First Search
= Breadth-First Search
= Uniform-Cost Search

» Heuristic Search Methods (new for all)
» Best First / Greedy Search

Review: Agents

JUSWUOJIAUT

An agent:

i /Agent h
e Perceives and acts
e Selects actions that maximize Sensors —

its utility function
e Has a goal
Environment:
Actuators _
* Input and output to the agent Actions
_ Y

Search -- the environment is:

fully observable, single agent, deterministic, static,
discrete

= Reflex agents:

= Choose action based
on current percept (and
maybe memory)

= Do not consider the
future consequences of
their actions

= Act on how the world IS

= Can a reflex agent
achieve goals?

* * *
* *
* * * * * * * *

* * * *

Goal Based Agents

= Goal-based agents:

Plan ahead
Ask “what if”

Decisions based on
(hypothesized)
consequences of
actions

Must have a model of
how the world evolves
In response to actions

Act on how the world
WOULD BE

* * *

*

*

* * * * * * * *

* * * *

Search thru a

Problem Space / State Space
* [nput:
» Set of states
» Successor Function [and costs - default to 1.0]
» Start state
= Goal state [test]

* Output:

» Path: start = a state satisfying goal test
» [May require shortest path]
» [Sometimes just need state passing test]

Example: Simplified Pac-Man

" |nput:
= A state space

= A successor function N 10

\
= A start state “E", 1.0

= A goal test

= Qutput:

Ex: Route Planning: Romania - Bucharest

= |nput:
= Set of states

» Operators [and costs]
» Start state

» Goal state (test)

= Qutput:

Example: N Queens

= |nput:
= Set of states

= Operators [and costs]
» Start state

» Goal state (test)

= Qutput

I Introduc

gm;«mgmms Algebraic Simplification
A “ advanced alqonthms wnh unparallel
N _ speed, scope, and scalability » [' l+ 1]

g2 (az ut; Z - [E'- u+1 e*] u(
o~ _L ~[E" -1 e®] u
* |nput: b 4] :
pu [)] - - [E’— (1+%) e““—e”’] u(s)
= Set of states

R
= —e2 [E' - (I + E) e 2 — 62’] v

» Operators [and costs]
» Start state

» Goal state (test)

= Qutput:

What is in State Space?

= A world state includes every details of the environment

= A search state includes only details needed for planning

Problem: Pathing Problem: Eat-all-dots
States: {x,y} locations States: {(x,y), dot booleans}
Actions: NSEW moves Actions: NSEW moves
Successor: update location Successor: update location

Goal: is (x,y) End? and dot boolean

Goal: dots all false?

= \World states:

State Space Sizes?

Pacman positions:
10x12 =120

Pacman facing:
up, down, left, right

Food Count: 30
Ghost positions: 12

State Space Sizes?

= How many?
= \World State:

120%(230)*(122)*4

= States for Pathing:
120

= States for eat-all-dots:

120%(230)

Quiz: Safe Passage

. e o o o @ o o

* *
Ce- -

" Problem: eat all dots while keeping the ghosts perma-scared
* What does the state space have to specify?

State Space Graphs

= State space graph:
= Each node is a state

= The successor function
IS represented by arcs

= Edges may be labeled
with costs !

= We can rarely build this
graph in memory (so we
don't)

~ /7 N/

@
-
.-
-

N\ S

!
.

*ﬂ\

/ N

Search Trees

“‘N”, 1.0 “‘E”, 1.0
/\

AT AT

= A search tree:
= Start state at the root node
= Children correspond to successors
= Nodes contain states, correspond to PLANS to those states
= Edges are labeled with actions and costs
= For most problems, we can never actually build the whole tree

Example: Tree Search

State Graph:

Ridiculously tiny search graph
for a tiny search problem

What is the search tree?

State Graphs vs. Search Trees

Each NODE in in the
search tree is an entire
PATH in the problem

graph.
S
-
d e p
We construct both b C e h r g
on demand — and | N AN
we construct as a a h r p q f
little as possible. N | N
p q f q C G
| PN |
q G a

States vs. Nodes

= Nodes in state space graphs are problem states
» Represent an abstracted state of the world
» Have successors, can be goal / non-goal, have multiple predecessors

= Nodes in search trees are plans

= Represent a plan (sequence of actions) which results in the node’s
state

» Have a problem state and one parent, a path length, a depth & a cost
» The same problem state may be achieved by multiple search tree

nodes Search Nodes

Parent

Problem States

Depth 5

Depth 6

Quiz: State Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Building Search Trees

o

- Rimnicu Vilcea
lllllllll

“Bucharest

SCraiova /.
lllllll

Sibiu @ @

= Search:
= Expand out possible plans
* Maintain a fringe of unexpanded plans
* Try to expand as few tree nodes as possible

General Tree Search

function T'REE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

™~

* Important ideas:
* Fringe Detailed pseudocode is

- Expansion in the book!
= Exploration strategy

= Main question: which fringe nodes to explore?

