CSE 473: Artificial Intelligence

Reinforcement Learning

Hanna Hajishirzi

Many slides over the course adapted from either Luke
Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or
Andrew Moore

Reinforcement Learning

= Reinforcement learning:
= Still have an MDP:

= Asetof statess €S
= A set of actions (per state) A Q /

= Amodel T(s,a,s’)
= Areward function R(s,a,s’)

= Still looking for a policy nt(s)

= New twist: don't know T or R
= |.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Key ldeas for Learning

= Online vs. Batch

= Learn while exploring the world, or learn from
fixed batch of data

= Active vs. Passive

* Does the learner actively choose actions to
gather experience? or, is a fixed policy
provided?

= Model based vs. Model free

» Do we estimate T(s,a,s’) and R(s,a,s’), or just
learn values/policy directly

Passive Learning

= Simplified task

* You don’t know the transitions T(s,a,s’)
You don’t know the rewards R(s,a,s’) 1
You are given a policy mn(s)
Goal: learn the state values (and maybe the model)
|.e., policy evaluation

= |n this case:
= |earner “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= We'll get to the active case soon
= This is NOT offline planning!

!

B

Model-Based Learning

* |dea:
» | earn the model empirically (rather than values)
= Solve the MDP as if the learned model were correct

= Empirical model learning

= Simplest case:
= Count outcomes for each s,a
= Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) the first time we experience (s,a,s’)
* More complex learners are possible (e.g. if we know

that all squares have related action outcomes, e.qg.
“stationary noise”)

Example: Model-Based Learning

y

= Episodes: 3|l = == | — +1oo\
1,1) up -1 1,1) up -1
(1,1) up (1,1) up , f f —
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1 1 f e |
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 1 2 3 4
(3,3) right -1 (3,2) up -1 y =1
(3,2) up -1 (4,2) exit -100
(3,3) right -1 (done) T(<3,3>, right, <4,3>)=1/3

(4,3) exit +100
(done)

T(<2,3>, right, <3,3>)=2/2

Model-free Learning

VT(s) > T(s,m(s),s)[R(s,m(s),s") + V" (s")]

= Big idea: why bother learning T? (S)
S
= Question: how can we compute V if we don’t '
(s)
know T?
» Use direct estimation to sample complete 1.

trials, average rewards at end

» Use sampling to approximate the
Bellman updates, compute new values
during each learning step

Simple Case: Direct Estimation

y
= Average the total reward for \ j
. . — | = | — [|+100
every trial that visits a state:
(1,1) up -1 (1,1) up - 2 4 t || -100
(1,2) up -1 (1,2) up
(1,2) up -1 (1,3) right -1 | == |-
(1,3) right -1 (2,3) right -1 1 2 3 4
(2,3) right -1 (3,3) right -1
: vy=1, R=-1
(3,3) right -1 (3,2) up -1
3,2) up -1 -
(3.2) up (4.2)exit-100 ;4 1y~ (92 +-106) /2 = -7
(3,3) right -1 (done)
(4,3) exit +100 V(3,3) ~ (99 + 97 +-102) / 3 =31.3

(done)

Problems with Direct Evaluation

= What's good about direct evaluation?
= |t is easy to understand
» |t doesn’t require any knowledge of T and R

= |t eventually computes the correct average
value using just sample transitions

= What's bad about direct evaluation?
* |t wastes information about state connections
» Each state must be learned separately
» S0, it takes long time to learn

Temporal Difference Learning

VT (s) < > T(s,m(s),s)[R(s,m(s),s") +~V"(s")]

= Big idea: why bother learning T? S
= Update V each time we experience a transition ni(s)
= Temporal difference learning (TD) s, 7t(S)

= Policy still fixed!

= Move values toward value of whatever ,
successor occurs: running average! A s

sample = R(s,n(s),s) +~V7(s)
VT(s) «— (1 —a)V"(s) 4+ (a)sample
V7T (s) «— V™ (s) + a(sample — V" (s))

1D Policy Evaluation

Vi(s) — (1 —-—a)V™(s) + « [R(s, w(s),s) + nyw(sl)}

(1,1) up -1 (1,1) up -1 3 — —- == | 1+100
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1 2 |} b || -100
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 1 1 -— | — | -
(3,3) right -1 (3,2) up -1
(3.2) up -1 (4,2) exit 100 X

y U = H -

P Updates for V(<3,3>):

3,3) right -1 d
(3,3) rig (done) V(<3,3>) = 0.5*0 + 0.5*[-1 + 1*0] = -0.5
4,3) exit +100
(4,3) ex V(<3,3>) = 0.5%0.5 + 0.5*[-1+1*100] = 49.475
(done)

V(<3,3>) = 0.5*49.475 + 0.5*[-1 + 1*-0.75]
Take y =1, a = 0.5, Vo(<4,3>)=100, Vo(<4,2>)=-100, Vo = 0 otherwise

Detour: Exp. Moving Average

= Exponential moving average
= Makes recent samples more important
Tp+(1—a) Tp1+(1—a)? zpo+...
1+ (1-a)+(1—-a)?+...

CI_D'n —

= Forgets about the past (distant past values were wrong anyway)
= Easy to compute from the running average

Tp = (1 _O‘f) *Tp—1 T+ Q- Ty,

= Decreasing learning rate can give converging averages

Problems with TD Value Learning

= TD value leaning is model-free for
policy evaluation (passive
learning)

= However, if we want to turn our value
estimates into a policy, we're sunk:

w(s) = argmaxQ*(s,a)
Q*(s,a) = > T(s,a,8) |R(s,a,s") +yV*(s)]

» |dea: learn Q-values directly
= Makes action selection model-free too!

Active Learning

= Full reinforcement learning
* You don’t know the transitions T(s,a,s’)

You don’t know the rewards R(s,a,s’)
You can choose any actions you like

+

Goal: learn the optimal policy 2 |}
... what value iteration did!

E

= |n this case: —
= |earner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the
world and find out what happens...

Q-Learning Update

= Q-Learning: sample-based Q-value iteration
Q*(s,a) =Y T(s,a,s") [R(s, a,s') 4+~ maz;\x Q* (s, a’)]

= | earn Q*(s,a) values
= Receive a sample (s,a,s’,r)
» Consider your old estimate: Q(s,a)
» Consider your new sample estimate:
sample = R(s,a,s’) +~ max Q(s',d)

a

» |[ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (a) [sample]

Q-Learning: Fixed Policy

s
s pas

Exploration / Exploitation

= Several schemes for action selection

» Simplest: random actions (g greedy)
= Every time step, flip a coin
= With probability ¢, act randomly
= With probability 1-¢, act according to current policy

= Problems with random actions?

= You do explore the space, but keep thrashing
around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions

Q-Learning: ¢ Greedy

s

PN

Exploration Functions

= When to explore
= Random actions: explore a fixed amount
= Better idea: explore areas whose badness is not (yet) established

= Exploration function

= Takes a value estimate and a count, and returns an
optimistic utility, e.g. f(u,n) = u + k/n (exact form not
important)

= Exploration policy mt(s’)=

maxQi(s,a) vs. maxf(Q;(s,a"), N(s',a))

a

Q-Learning Final Solution

= Q-learning produces tables of g-values:

Q-Learning Properties

» Amazing result: Q-learning converges to optimal policy
* |f you explore enough
* |f you make the learning rate small enough
= ... but not decrease it too quickly!
= Not too sensitive to how you select actions (!)

= Neat property: off-policy learning

» |earn optimal policy without following it (some caveats)

M

S iE S

Q-Learning

* |In realistic situations, we cannot possibly learn
about every single state!
= Too many states to visit them all in training
= Too many states to hold the g-tables in memory

* |nstead, we want to generalize:

» |earn about some small number of training states
from experience

= Generalize that experience to new, similar states

* This is a fundamental idea in machine learning, and
we’ll see it over and over again

Example: Pacman

= Let's say we discover
through experience
that this state is bad:

* |In naive q learning,
we know nothing
about related states
and their g values:

= Or even this third one!

Feature-Based Representations

= Solution: describe a state using
a vector of features (properties)

» Features are functions from states
to real numbers (often 0/1) that
capture important properties of the
state

= Example features:

= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

...... etc.
Is it the exact state on this slide?

= Can also describe a g-state (s, a) with
features (e.g. action moves closer to food)

Which Algorithm?

Q-learning, no features, 50 learning trials:

Which Algorithm?

Q-learning, no features, 1000 learning trials:

Linear Feature Functions

» Using a feature representation, we can write a

g function (or value function) for any state
using a few weights:

V(s) =wif1(s) +wafa(s) + ... 4+ wnfn(s)

Q(s,a) = wi f1(s,a)twafa(s,a)+...+wnfn(s,a)

= Advantage: our experience is summed up in
a few powerful numbers

= Disadvantage: states may share features but
actually be very different in value!

Function Approximation

Q(s,a) = wi f1(s,a)twafa(s,a)+...+wnfn(s,a)

» Q-learning with linear g-functions:

transition = (s,a,r,s’)

difference = |r 4+~ max Q(s',a)| — Q(s,a)

a

Q(s,a) «— Q(s,a) + « [difference] Exact Q’s

w; — w; + « [difference] f;(s,a) Approximate Qs

= [ntuitive interpretation:
= Adjust weights of active features
= E.g. if something unexpectedly bad happens, disprefer all states
with that state’s features

= Formal justification: online least squares

Example: Q-Pacman

Q(s,a) =4.0fpor(s,a) — 1.0fasr(s,a)
fpor(s, NORTH) = 0.5
faer(s, NORTH) = 1.0

Iy — — 41
Q(s',) =0 Q(s,a) =+ e
R(s,a,s") = —500 - — 500

correction = —501
wpor <— 4.0 6" [—501] 0.5
wgsT +— —1.0 4+ a[-501]1.0

Q(s,a) = 3.0fpor(s,a) —3.0fgsT(s,a)

Linear Regression

20

f1(x)

Prediction Prediction

Yy = wo + wy f1(x) y; = wo + w1 f1(z) + wafo(x)

