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Bayesian Networks - Learning
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Algorithms

Blind search
Heuristic search
Mini-max & Expectimax

MDPs
I EIEE 8 Reinforcement learning
& State estimation

Variable Elimination

Knowledge Representation

Problem spaces
Constraint networks
HMMs

Bayesian networks




Example: Alarm Network

Only 10 params
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Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

n
P(z1,22,...20) = ][] P(zi|parents(X;))
i=1
= This lets us reconstruct any entry of the full joint

» Not every BN can represent every joint distribution
= The topology enforces certain independence assumptions
= Compare to the exact decomposition according to the chain rule!
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P(B | J=true, M=true)

Earthquake Burglary
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Repeated computations = Dynamic Progmmmmg
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Learning

?

What is Machine Learning ?




Machine Learning

Study of algorithms that

» improve their performance
= at some task

= with experience

Machine

Data === == Understanding

Learning

©2005-2009 Carlos Guestrin 16

Exponential Growth in Data

Machine

Data == == Understanding

Learning

©2005-2009 Carlos Guestrin 17
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Supremacy of Machine Learning

= Machine learning is preferred approach to
Speech recognition, Natural language processing
Web search — result ranking

Computer vision

Medical outcomes analysis

Robot control

Computational biology

Sensor networks

» This trend is accelerating
» Improved machine learning algorithms
Improved data capture, networking, faster computers
Software too complex to write by hand
New sensors / 10 devices
Demand for self-customization to user, environment

©2005-2009 Carlos Guestrin 18

Space of ML Problems

Type of Supervision
(eg, Experience, Feedback)

Labeled Reward
Examples

DIEYS 1Y Classification Clustering

Function

(o131 {1 ITITEY Regression
Function
L] [[3A Apprenticeship  Reinforcement

Learning Learning

;paulea Buleg s 1BYAA
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The Origin of Bayes Nets

Pr(B=t) Pr(B=f)
Earthquake Burglarym
/ / Pr(AIE B)

eb| 0.9 (0.1)
eb| 0.2(0.8)
zb| 0.85(0.15)
zb| 0.01(0.99)

© Daniel S. Weld 20

Learning Topics

= |_earning Parameters for a Bayesian Network

» Fully observable
= Maximum Likelihood (ML)
= Maximum A Posteriori (MAP)
= Bayesian
» Hidden variables (EM algorithm)

= Learning Structure of Bayesian Networks

© Daniel S. Weld
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Parameter Estimation and Bayesian

Networks
E[B[R[A]T M
/ / T|F|T|T|F|T
=5 FIF|F|F|F|T

FITIF|T|T|T
@ FIF|F|T|T|T

FIT|F|F|F|F
We have:

- Bayes Net structure and observations
- We need: Bayes Net parameters

Parameter Estimation and Bayesian
Networks

5
N E
= T
e F
Qerzcal) :

P(B) =? =04

=0.6




Parameter Estimation and Bayesian

Networks

Earthquake E B A

/ T|F T

: F | F F

(i) e

F | F T

Qerzcar) | F | T i
P(A|E,B) =?
P(AIE,B) = ?
P(AI-EB) =
P(A|-E,-B) =?

Parameter Estimation and Bayesian
Networks

Earthquake

E|B A
/ T| F T
; F|F F
F|F T
@ |FIT| [F] O
P(A|E,B) =?
P(A|E,~B) = ?
P(A|-E,B) = ?

P(A|-E,~B) = 0.5

12/1/14
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Parameter Estimation and Bayesian

Networks
Coin Flip
CI‘ C~2>
P(H|C,) = 0.1

Which coin will | use!?

P(C) =113 P(C) = 1/3 P(C) = I3

Prior: Probability of a hypothesis
before we make any observations

12/1/14
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Coin Flip

—

P(HIC-..) =0.I P(H|C)=05 P(H|C;) =0.9

Which coin will | use?

P(C) = 13 P(C,) = 13 P(C,) = I3

Uniform Prior:All hypothesis are equally likely
before we make any observations

Experiment 1. Heads

Which coin did | use?
P(C,[H) = P(C,[H) =? P(C,[H) =?

P(Ci|H) =

T e
i
X ) _ ey
5 o)
o RSN
LY ke

[PH|C)=0.1] P(H|C,)=05  P(HIC,) =09
[PC)=13] PC)=113 P(C,) = I/3

S Y

12/1/14

12



Experiment 1. Heads

Which coin did | use?
P(C,|H) = 0.066 P(C,|H)=0.333 P(C,/H) = 0.6

Posterior: Probability of a hypothesis given data

C, C,
@\ ) a)
PH|C)=0.1 P(H|C)=05 P(H|C,) =09

P(C) = I/3 P(C) = I/3 P(C) = I/3

Using Prior Knowledge

» Should we always use a Uniform Prior ?
= Background knowledge:

Heads => we have to buy Dan chocolate
Dan likes chocolate...

=> Dan is more likely to use a coin biased in his favor

PH|C)=0.  P(H|C,)=05 P(H|C,) =09

12/1/14
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Using Prior Knowledge

We can encode it in the prior:

P(C)=005 PC)=025  P(C,)=070
C

~——

PH|C)=0.  P(H|C,)=05 P(H|C,) =09

Experiment 1. Heads
Which coin did | use?
PCIH)=?  PCJH)=?  PCH)=?

P(Cy|H) = aP(H|C1)P(Ch)

C

P(HIC)=0.1 P(H|C)=05  P(H|C,) =09

WL e
R @

P(C)=005 P(C)=025  P(C)=0.70
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Experiment 1. Heads

Which coin did | use!?
P(C,|H) = 0.006 P(C,|H) =0.165 P(C,|H) = 0.829

Compare with ML posterior after Exp I:
P(C,|H) =0.066 P(C,|H) =0.333 P(C,|H)=0.600
C|

—
O @ 6
P(HIC'.») =0. P(H|C)=05 P(H|é§ =0.9
P(C)=0.05 P(C)=0.25 P(C,) = 0.70

Experiment 2: Talls

Which coin did | use?
P(C|HT)=?  P(CJHT)=?  P(C,HT)=?
P(C1|HT) = aP(HT|C1)P(C1) = aP(H|C1)P(T|C1)P(Ch)

C |

P(HIC)=0.I  P(H|C,) = 0.5
PC)=005 P(C)=025  P(C,) =070

12/1/14
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Experiment 2: Tails

Which coin did | use!?
P(C,[HT) = 0.035 P(C,|HT) =0.481 P(C,|HT)=0.485
P(C1{HT) = aP(HT|Cy)P(C}) = aP(H|C1)P(T|Cy)P(Ch)

C

T M

¥
PH|C)=0.1 P(H|C)=05 P(H|C,) =09
P(C)=005  P(C)=025 P(C,) = 0.70

WL
Q s

Experiment 2: Talls

Which coin did | use?
P(C,|HT) = 0.035 P(C,|HT)=0.481 P(C,|HT) = 0.485

\v"t \;Q/ 9 *
PH|C)=0.1 P(H|C)=05 |P(H|C,)=09

P(C)=005 P(C)=025 | P(C)=0.70

12/1/14
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Your Estimate?

What is the probability of heads after two experiments?

Most likely coin: Best estimate for P(H)

= P(HIC,) = 0.9

C G,

P(HIC)=0.1 P(H|C)=05 P(HIC,) =09
P(C)=005 P(C)=025 P(C)=070

Your Estimate?

Maximum A Posteriori (MAP) Estimate:
The best hypothesis that fits observed data
assuming a non-uniform prior

Most likely coin: Best estimate for P(H)

X

C, {3 P(H|C,) = 0.9

Y

P(H|C,) = 0.9
P(C,) = 0.70

12/1/14
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Did We Do The Right Thing?

P(C,|HT)=0.035 P(C,|HT)=0.48] P(C,|HT)=0.485

PH|C)=0.1 P(H|C)=05 P(H|C,) =09

Did We Do The Right Thing?

P(C,|HT) =0.035 P(C,|HT)=0.48] P(C,|HT)=0.485

C, and C, are almost
equally likely

PH|IC)=0.  P(H|C,)=05 P(H|C,) =09

12/1/14
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A Better Estimate

Recall: P(H) =) P(H|C:)P(C:) = 0.680

=1

&
CI
PHIC)=0.  P(H|C)=05 P(H|C,) =09

Bayesian Estimate

Bayesian Estimate: Minimizes prediction error,
given data assuming an arbitrary prior

3

P(H) = P(H|C;)P(C;) = 0.680

i=1

&
CI
PH|C)=0.1 P(H|C)=05 P(H|C,) =09

12/1/14
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Comparison
After more experiments: HTHHHHHHHHH

ML (Maximum Likelihood):
P(H)=0.5
after 10 experiments: P(H) = 0.9

MAP (Maximum A Posteriori):

P(H)=0.9

after 10 experiments: P(H) = 0.9
Bayesian:

P(H) = 0.68

after 10 experiments: P(H) = 0.9

Easy to compute S u m m a ry
Prior Hypothesis

Maximum Likelihood Uniform The most likely
Estimate
Maximum A Any The most likely
Posteriori Estimate,
Weighted
Any combination

Bayesian Estimate

Incorporates prior

Still easy to compute}
&knowledge

Minimizes error
Great when data is scarce
Potentially much harder to compute

12/1/14
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Bayesian Learning

Prior
Use Bayes rule: Data Likelihood T\
¥ o ?géu

Posterior P(Y | X) = P(X|Y) P(Y) >
" P(X)

Y / \ Normalization

o

Or equivalently: P(Y | X) «« P(X | Y) P(Y)

Parameter Estimation and Bayesian

Networks

Z

/ O\ -

F

= T

e i

CEPEES
Prior Now compute
P(B) = I + data = | A either MAP or

- : Bayesian estimate

12/1/14
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What Prior to Use?

Prev, you knew: it was one of only three coins

KN

» Now more complicated...

The following are two common priors

Binary variable Beta
= Posterior distribution is binomial
= Easy to compute posterior

Discrete variable Dirichlet
= Posterior distribution is multinomial
» Easy to compute posterior

© Dgrael S. Weld

[N]

Beta Distribution

™ Beta(1,2)
m /

Beta(2,1)
1] 02 04 06 08 1
T Beta(2,8) Beta(8,2)

Beta(5,9)

12/1/14
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Beta Distribution

» Example: Flip coin with Beta distribution
as prior over p [prob(heads)]
1. Parameterized by two positive numbers: a, b
2. Mode of distribution (E[p]) is a/(a+b)
3. Specify our prior belief for p = a/(a+b)
4. Specify confidence in this belief with high
initial values for a and b
= Updating our prior belief based on data
» incrementing a for every heads outcome
» incrementing b for every tails outcome

One Prior: Beta Distribution

_ I'(a+0)
5(=) = Far )

CL'a_l(]. . Q’:)b_l,

0 <2 <1 and a,b > 0

Here I'(y) = fooo ¥ le %dy

For any positive integer y, I'(y) = (y-1)!

12/1/14
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Parameter Estimation and Bayesian

Networks
s
RN "
=R .
/ F
Qorzcali) 1

Prior B B
P(B|data) = ? Beta(1,4) “+ data” = (3.7) |3 |.7

Prior P(B)= 1/(1+4) = 20% with equivalent sample size 5

Parameter Estimation and Bayesian
Networks

E[B A

/ T|F T

. F|F F

F|F T

Qorzcay | FLT] [F
P(AJE,B) = ?
P(A|E,-B) = ?
P(A|-E,B) = ?
P(A|-E,-B) = ?

12/1/14
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Parameter Estimation and Bayesian

M| H|H|[T|H|>

Networks

Earthquake E| B

/ T|F

@)

Qerzcai) | F T
Prior

P(A|-E,B) = ? Beta(2,3)

Parameter Estimation and Bayesian

||| H|>

Networks

T8

T| F

@ (@)

FIF

Qorzca) | F| T
Prior

P(A|-E,B) = ? Beta(2,3) + data= (3.4)

12/1/14
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Bayesian Learning

Use Bayes rule: Data Likelihood ]
Ve

Posterior P(Y | X) = P(X[Y) P(Y)
.. P(X)

e ~

o

Normalization

Or equivalently: P(Y | X) «« P(X | Y) P(Y)

Naive Bayes

P(Y,F1...Fn) = P(Y) HP(Fi‘Y)

F1 F2 F3 Fu

Assume that features are conditionally independent given class variable
Works well in practice
But forces probabilities towards 0 and 1

12/1/14
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Nailve Bayes

= Naive Bayes assumption:
» Features are independent given class:
P(X1, Xo|Y) = P(X1]| X2, Y)P(Xo]Y)
= P(X1]Y)P(X2]Y)
= More generally:

P(X1..Xn|Y) = [[ P(X|Y)

1

= How many parameters now?

= Suppose X is composed of n binary features

NB with Bag of Words for text

classification
= Learning phase:

= Prior P(Y)
= Count how many documents from each topic (prior)
= P(X[Y)
= For each of m topics, count how many times you saw
word X; in documents of this topic (+ k for prior)
= Divide by number of times you saw the word (+ kxm)

» Test phase:
= For each document

= Use naive Bayes decision rule
LengthDoc

hyp(x) = arg manP(y) T Plxly)
i=1

12/1/14
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Probabilities: Important Detail!

= P(spam | X; ... X,) = I'1 P(spam | X,)
Any more potential problems here?

= \WWe are multiplying lots of small numbers
Danger of underflow!
= 0.5=7E-18

= Solution? Use logs and add!
= p, * p, = e log(pT)+log(p2)

= Always keep in log form

28



