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CSE 473: Artificial Intelligence 
Fall 2014 

Bayesian Networks - Learning 
 

Dan Weld 

Slides adapted from Jack Breese, Dan Klein, Daphne Koller, 
Stuart Russell, Andrew Moore & Luke Zettlemoyer 
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What action 
next?   

Percepts Actions 

Environment 

Static vs. Dynamic 

Fully  
vs. 

 Partially  
Observable 

Perfect 
vs. 

Noisy 

Deterministic  
vs.  

 Stochastic 

Instantaneous  
vs.  

 Durative 
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What action 
next?   

Blind search 
Heuristic search 
Mini-max & Expectimax 
MDPs  
Reinforcement learning 
State estimation 
Variable Elimination 
 

Algorithms 

Knowledge Representation 
Problem spaces 
Constraint networks 
HMMs 
Bayesian networks 
First-order logic 
Markov logic networks 
… 
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Example: Alarm Network 

Burglary Earthqk 

Alarm 

John 
calls 

Mary 
calls 

B P(B) 

+b 0.001 

←b 0.999 

E P(E) 
+e 0.002 
←e 0.998 

B E A P(A|B,E) 
+b +e +a 0.95 
+b +e ←a 0.05 
+b ←e +a 0.94 
+b ←e ←a 0.06 
←b +e +a 0.29 
←b +e ←a 0.71 
←b ←e +a 0.001 
←b ←e ←a 0.999 

A J P(J|A) 
+a +j 0.9 
+a ←j 0.1 
←a +j 0.05 
←a ←j 0.95 

A M P(M|A) 
+a +m 0.7 
+a ←m 0.3 
←a +m 0.01 
←a ←m 0.99 

Only 10 params 

Probabilities in BNs 

§  Bayes’ nets implicitly encode joint distributions 
§  As a product of local conditional distributions 
§  To see what probability a BN gives to a full assignment, multiply 

all the relevant conditionals together: 

§  This lets us reconstruct any entry of the full joint 
§  Not every BN can represent every joint distribution 

§  The topology enforces certain independence assumptions 
§  Compare to the exact decomposition according to the chain rule! 
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P(B | J=true, M=true) 

10 

Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 

P(b|j,m) = α Σ P(b,j,m,e,a) 
           e,a 

Variable Elimination 

11 

P(b|j,m) = αP(b) ΣP(e) ΣP(a|b,e)P(j|a)P(m,a) e              a 

Repeated computations è Dynamic Programming 

© UC Berkeley 
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Learning 

?
 
 

15 

What is Machine Learning ? 
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16 ©2005-2009 Carlos Guestrin 

Machine Learning 
Study of algorithms that 
§  improve their performance  
§  at some task  
§  with experience 

Data Understanding Machine  
Learning 

17 ©2005-2009 Carlos Guestrin 

Exponential Growth in Data 

Data Understanding Machine  
Learning 
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18 ©2005-2009 Carlos Guestrin 

Supremacy of Machine Learning 

§  Machine learning is preferred approach to 
§  Speech recognition, Natural language processing 
§  Web search – result ranking 
§  Computer vision 
§  Medical outcomes analysis 
§  Robot control 
§  Computational biology 
§  Sensor networks 
§  … 

§  This trend is accelerating 
§  Improved machine learning algorithms  
§  Improved data capture, networking, faster computers 
§  Software too complex to write by hand 
§  New sensors / IO devices 
§  Demand for self-customization to user, environment 

19 

Space of ML Problems 
W

hat is B
eing Learned? 

Type of Supervision  
(eg, Experience, Feedback) 

Labeled 
Examples 

Reward Nothing 

Discrete  
Function 

Classification Clustering 

Continuous 
Function 

Regression 

Policy Apprenticeship 
Learning 

Reinforcement 
Learning 
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The Origin of Bayes Nets 

Earthquake Burglary 

Alarm 

Nbr2Calls Nbr1Calls 

Pr(B=t) Pr(B=f) 
   0.05    0.95 

       Pr(A|E,B) 
e,b    0.9 (0.1) 
e,b    0.2 (0.8) 
e,b    0.85 (0.15) 
e,b    0.01 (0.99)                  

Radio 

© Daniel S. Weld 21 

Learning Topics 

§  Learning Parameters for a Bayesian Network 
§  Fully observable 

§ Maximum Likelihood (ML) 
§ Maximum A Posteriori (MAP) 
§ Bayesian 

§ Hidden variables (EM algorithm) 
§  Learning Structure of Bayesian Networks 
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Parameter Estimation and Bayesian 
Networks 

E B R A J M 
T F T T F T 
F F F F F T 
F T F T T T 
F F F T T T 
F T F F F F 
... We have: 	



- Bayes Net structure and observations	


- We need: Bayes Net parameters	



Parameter Estimation and Bayesian 
Networks 

E B R A J M 
T F T T F T 
F F F F F T 
F T F T T T 
F F F T T T 
F T F F F F 
... 

P(B) = ?	


	



P(¬B) = 1- P(B) 	



= 0.4	


	



= 0.6	
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Parameter Estimation and Bayesian 
Networks 

E B R A J M 
T F T T F T 
F F F F F T 
F T F T T T 
F F F T T T 
F T F F F F 
... 

P(A|E,B) = ?	


P(A|E,¬B) = ?	


P(A|¬E,B) = ?	


P(A|¬E,¬B) = ?	



Parameter Estimation and Bayesian 
Networks 

E B R A J M 
T F T T F T 
F F F F F T 
F T F T T T 
F F F T T T 
F T F F F F 
... 

P(A|E,B) = ?	


P(A|E,¬B) = ?	


P(A|¬E,B) = ?	


P(A|¬E,¬B) = 0.5	
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Parameter Estimation and Bayesian 
Networks 

Coin 

Coin Flip 

P(H|C2) = 0.5	

P(H|C1) = 0.1	



C1	

 C2	



P(H|C3) = 0.9	



C3	



Which coin will I use?	



P(C1) = 1/3	

 P(C2) = 1/3	

 P(C3) = 1/3	



Prior: Probability of a hypothesis 	


before we make any observations	
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Coin Flip 

P(H|C2) = 0.5	

P(H|C1) = 0.1	



C1	

 C2	



P(H|C3) = 0.9	



C3	



Which coin will I use?	



P(C1) = 1/3	

 P(C2) = 1/3	

 P(C3) = 1/3	



Uniform Prior: All hypothesis are equally likely 	


before we make any observations	



Experiment 1: Heads 

Which coin did I use?	


P(C1|H) = ?	

 P(C2|H) = ?	

 P(C3|H) = ?	



P(H|C2) = 0.5	

 P(H|C3) = 0.9	

P(H|C1)=0.1 	



C1	

 C2	

 C3	



P(C1)=1/3	

 P(C2) = 1/3	

 P(C3) = 1/3	
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Experiment 1: Heads 

Which coin did I use?	


P(C1|H) = 0.066	

 P(C2|H) = 0.333	

 P(C3|H) = 0.6	



P(H|C2) = 0.5	

 P(H|C3) = 0.9	

P(H|C1) = 0.1	



C1	

 C2	

 C3	



P(C1) = 1/3	

 P(C2) = 1/3	

 P(C3) = 1/3	



Posterior: Probability of a hypothesis given data	



Using Prior Knowledge 

§  Should we always use a Uniform Prior ? 
§  Background knowledge: 

Heads => we have to buy Dan chocolate 
Dan likes chocolate… 
=> Dan is more likely to use a coin biased in his favor 

P(H|C2) = 0.5	

P(H|C1) = 0.1	



C1	

 C2	



P(H|C3) = 0.9	



C3	
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Using Prior Knowledge 

P(H|C2) = 0.5	

P(H|C1) = 0.1	



C1	

 C2	



P(H|C3) = 0.9	



C3	



P(C1) = 0.05	

 P(C2) = 0.25	

 P(C3) = 0.70	



We can encode it in the prior:	



Experiment 1: Heads 
Which coin did I use?	



P(C1|H) = ?	

 P(C2|H) = ?	

 P(C3|H) = ?	



P(H|C2) = 0.5	

 P(H|C3) = 0.9	

P(H|C1) = 0.1	



C1	

 C2	

 C3	



P(C1) = 0.05	

 P(C2) = 0.25	

 P(C3) = 0.70	
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Experiment 1: Heads 
Which coin did I use?	



P(C1|H) = 0.006	

 P(C2|H) = 0.165	

 P(C3|H) = 0.829	



P(H|C2) = 0.5	

 P(H|C3) = 0.9	

P(H|C1) = 0.1	



C1	

 C2	

 C3	



P(C1) = 0.05	

 P(C2) = 0.25	

 P(C3) = 0.70	



P(C1|H) = 0.066	

 P(C2|H) = 0.333	

 P(C3|H) = 0.600	


Compare with ML posterior after Exp 1:	



Experiment 2: Tails 

Which coin did I use?	


P(C1|HT) = ?	

 P(C2|HT) = ?	

 P(C3|HT) = ?	



P(H|C2) = 0.5	

 P(H|C3) = 0.9	

P(H|C1) = 0.1	



C1	

 C2	

 C3	



P(C1) = 0.05	

 P(C2) = 0.25	

 P(C3) = 0.70	
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Experiment 2: Tails 

Which coin did I use?	



P(H|C2) = 0.5	

 P(H|C3) = 0.9	

P(H|C1) = 0.1	



C1	

 C2	

 C3	



P(C1) = 0.05	

 P(C2) = 0.25	

 P(C3) = 0.70	



P(C1|HT) = 0.035	

 P(C2|HT) = 0.481	

 P(C3|HT) = 0.485	



Experiment 2: Tails 

Which coin did I use?	


P(C1|HT) = 0.035	

 P(C2|HT)=0.481	

 P(C3|HT) = 0.485	



P(H|C2) = 0.5	

 P(H|C3) = 0.9	

P(H|C1) = 0.1	



C1	

 C2	

 C3	



P(C1) = 0.05	

 P(C2) = 0.25	

 P(C3) = 0.70	
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Your Estimate? 
What is the probability of heads after two experiments?	



P(H|C2) = 0.5	

 P(H|C3) = 0.9	

P(H|C1) = 0.1	



C1	

 C2	

 C3	



P(C1) = 0.05	

 P(C2) = 0.25	

 P(C3) = 0.70	



Best estimate for P(H) 	



P(H|C3) = 0.9	

C3	



Most likely coin: 	



Your Estimate? 

Most likely coin: 	

 Best estimate for P(H) 	



P(H|C3) = 0.9	

C3	



Maximum A Posteriori (MAP) Estimate: 	


The best hypothesis that fits observed data 	



assuming a non-uniform prior	



P(H|C3) = 0.9	



C3	



P(C3) = 0.70	
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Did We Do The Right Thing? 

P(H|C2) = 0.5	

 P(H|C3) = 0.9	

P(H|C1) = 0.1	



C1	

 C2	

 C3	



P(C1|HT)=0.035	

 P(C2|HT)=0.481	

 P(C3|HT)=0.485	



Did We Do The Right Thing? 

P(C1|HT) =0.035	

 P(C2|HT)=0.481	

 P(C3|HT)=0.485	



P(H|C2) = 0.5	

 P(H|C3) = 0.9	

P(H|C1) = 0.1	



C1	

 C2	

 C3	



C2 and C3 are almost 	


equally likely	





12/1/14 

19 

A Better Estimate 

P(H|C2) = 0.5	

 P(H|C3) = 0.9	

P(H|C1) = 0.1	


C1	

 C2	

 C3	



Recall:	

 = 0.680	



P(C1|HT)=0.035	

 P(C2|HT)=0.481	

 P(C3|HT)=0.485	



Bayesian Estimate 

P(C1|HT)=0.035	

 P(C2|HT)=0.481	

 P(C3|HT)=0.485	



P(H|C2) = 0.5	

 P(H|C3) = 0.9	

P(H|C1) = 0.1	


C1	

 C2	

 C3	



= 0.680	



Bayesian Estimate: Minimizes prediction error, 	


given data assuming an arbitrary prior	
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Comparison  
After more experiments: HTHHHHHHHHH 

ML (Maximum Likelihood):  
 P(H) = 0.5 
 after 10 experiments: P(H) = 0.9 

MAP (Maximum A Posteriori):  
 P(H) = 0.9 
 after 10 experiments: P(H) = 0.9 

Bayesian:  
 P(H) = 0.68 
 after 10 experiments: P(H) = 0.9 

Summary 
Prior Hypothesis 

Maximum Likelihood 
Estimate 

Maximum A 
Posteriori Estimate 

Bayesian Estimate 

Uniform The most likely 

Any The most likely 

Any Weighted 
combination 

Easy to compute 

Still easy to compute 
Incorporates prior 
knowledge 

Minimizes error 
Great when data is scarce 
Potentially much harder to compute 
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Bayesian Learning 

Use Bayes rule: 

Or equivalently:  P(Y | X) ∝ P(X | Y) P(Y) 

Prior 

Normalization 

Data Likelihood 

Posterior P(Y | X)  =  P(X |Y) P(Y) 
                  P(X) 

Parameter Estimation and Bayesian 
Networks 

E B R A J M 
T F T T F T 
F F F F F T 
F T F T T T 
F F F T T T 
F T F F F F 
... 

P(B) = ?	


-5

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

Prior	



+ data = 	


-2

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

Now compute	


either MAP or	



Bayesian estimate	





12/1/14 

22 

What Prior to Use? 
§  Prev, you knew: it was one of only three coins 

§  Now more complicated… 

§  The following are two common priors 
§  Binary variable Beta 

§  Posterior distribution is binomial 
§  Easy to compute posterior 

 
§  Discrete variable Dirichlet 

§  Posterior distribution is multinomial 
§  Easy to compute posterior  

© Daniel S. Weld 
54 

Beta Distribution 
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Beta Distribution 

§  Example: Flip coin with Beta distribution 
as prior over p [prob(heads)] 
1.  Parameterized by two positive numbers: a, b 
2.  Mode of distribution (E[p]) is a/(a+b) 
3.  Specify our prior belief for p = a/(a+b) 
4.  Specify confidence in this belief with high 

initial values for a and b 
§  Updating our prior belief based on data 

§  incrementing a for every heads outcome 
§  incrementing b for every tails outcome 

§  So after h heads out of n flips, our 
posterior distribution says P(head)=(a+h)/
(a+b+n) 

One Prior: Beta Distribution 

a,b 

For any positive integer y, Γ(y) = (y-1)! 
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Parameter Estimation and Bayesian 
Networks 

E B R A J M 
T F T T F T 
F F F F F T 
F T F T T T 
F F F T T T 
F T F F F F 
... 

P(B|data) = ?	


Prior 

“+ data” = 	

Beta(1,4) (3,7) .3 
B ¬B 

.7 

Prior P(B)= 1/(1+4) = 20% with equivalent sample size 5 

Parameter Estimation and Bayesian 
Networks 

E B R A J M 
T F T T F T 
F F F F F T 
F T F T T T 
F F F T T T 
F T F F F F 
... 

P(A|E,B) = ?	


P(A|E,¬B) = ?	


P(A|¬E,B) = ?	


P(A|¬E,¬B) = ?	
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Parameter Estimation and Bayesian 
Networks 

E B R A J M 
T F T T F T 
F F F F F T 
F T F T T T 
F F F T T T 
F T F F F F 
... 

P(A|E,B) = ?	


P(A|E,¬B) = ?	


P(A|¬E,B) = ?	


P(A|¬E,¬B) = ?	



Prior	



Beta(2,3) 

Parameter Estimation and Bayesian 
Networks 

E B R A J M 
T F T T F T 
F F F F F T 
F T F T T T 
F F F T T T 
F T F F F F 
... 

P(A|E,B) = ?	


P(A|E,¬B) = ?	


P(A|¬E,B) = ?	


P(A|¬E,¬B) = ?	



Prior	



+ data= 	

Beta(2,3) (3,4) 
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Bayesian Learning 

Use Bayes rule: 

Or equivalently:  P(Y | X) ∝ P(X | Y) P(Y) 

Prior 

Normalization 

Data Likelihood 

Posterior P(Y | X)  =  P(X |Y) P(Y) 
                  P(X) 

Naïve Bayes 

F 2 F N F 1 F 3 

Y 
Class 
Value 

… 

Assume that features are conditionally independent given class variable 
Works well in practice 
    But forces probabilities towards 0 and 1  
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Naïve Bayes 
§  Naïve Bayes assumption: 

§  Features are independent given class: 

§  More generally: 

§  How many parameters now? 
§  Suppose X is composed of n binary features 

NB with Bag of Words for text 
classification 

§  Learning phase: 
§  Prior P(Y) 

§ Count how many documents from each topic (prior) 
§  P(Xi|Y)  

§ For each of m topics, count how many times you saw 
word Xi in documents of this topic (+ k for prior) 

§ Divide by number of times you saw the word (+ k×m) 

§  Test phase: 
§  For each document 

§ Use naïve Bayes decision rule 
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Probabilities: Important Detail! 

Any more potential problems here? 

§  P(spam | X1 … Xn) =  Π P(spam | Xi) 
 

i 

§  We are multiplying lots of small numbers  
 Danger of underflow! 

§  0.557 = 7 E -18        

§  Solution? Use logs and add! 
§  p1 * p2 = e log(p1)+log(p2) 

§  Always keep in log form 


