CSE 473: Artificial Intelligence

Bayes' Nets: Inference

Dan Weld

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Examle: Alarm Network

Е	P(E)
+e	0.002
-е	0.998

Α	М	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

$$P(+b, -e, +a, -j, +m) = 7$$

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

Е	P(E)
+e	0.002
-е	0.998

Α	М	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

$$P(+b, -e, +a, -j, +m) = P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) = 0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$$

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-e	-a	0.999

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

$$P(X) = .9$$

$$P(Y|X) = 1$$

$$P(Z|Y) = .5$$

$$P(Y|\#X) = 1$$

$$P(Z|\#Y) = .5$$

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they *could* be independent: how?

D-separation

D-separation: Outline

- Study independence properties for triples
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering such queries

Causal Chains

• This configuration is a "causal chain"

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

• Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$

Yes!

Evidence along the chain "blocks" the influence

Common Cause

• This configuration is a "common cause"

• Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Yes!

 Observing the cause blocks influence between effects.

Common Effect

Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

The General Case

CONDITIONAL INDEPENDENCE

- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be broken into repetitions of the three canonical cases

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!

- Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
- Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
- Common effect (aka v-structure)
 A → B ← C where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Inactive Triples

D-Separation

- Query: $X_i \perp \!\!\!\perp X_i | \{X_{k_1}, ..., X_{k_n}\}$?
- Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

$$X_i \stackrel{\searrow}{\searrow} X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Example

$$R \perp \!\!\! \perp B$$
 Yes $R \perp \!\!\! \perp B | T$ $R \perp \!\!\! \perp B | T'$

Example

$$L \perp \!\!\! \perp T' \mid T$$
 Yes
 $L \perp \!\!\! \perp B \mid T$
 $L \perp \!\!\! \perp B \mid T'$
 $L \perp \!\!\! \perp B \mid T, R$ Yes

Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:

Structure Implications

 Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 This list determines the set of probability distributions that can be represented

Computing All Independences Compute All The X 2 INDEPENDENCES! X 2 X 2 X 2

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets

- **✓** Representation
- ✓ Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes' Nets from Data

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
 - lacktriangledown Posterior probability $P(Q|E_1=e_1,\dots E_k=e_k)$
 - Most likely explanation: $\operatorname{argmax}_q P(Q=q|E_1=e_1\ldots)$

Inference by Enumeration

- General case:
 - $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ $X_1, X_2, \dots X_n$ All variables Evidence variables: Query* variable: Hidden variables:
 - Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k})$$

$$X_1, X_2, \dots X_n$$

$$P(Q|e_1 \dots e_k) = \frac{1}{Z} P(Q, e_1 \dots e_k)$$

We want:

* Works fine with multiple auery variables, too

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

Inference by Enumeration?

 $P(Antilock|observed\ variables) = ?$

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

■ First we'll need some new notation: factors

Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1
- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)
- Number of capitals = dimensionality of the table

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

Factor Zoo II

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

- Family of conditionals: P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

P(W|T)

Т	W	Р	
hot	sun	0.8	ľ
hot	rain	0.2	
cold	sun	0.4	-
cold	rain	0.6	L

P(W|hot)

P(W|cold)

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

P(rain|T)

Т	W	Р	
hot	rain	0.2	$\mid \ \mid P(rain hot)$
cold	rain	0.6	$\left ight P(rain cold)$

Factor Zoo Summary

- In general, when we write $P(Y_1 \dots Y_N \mid X_1 \dots X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are P(y₁ ... y_N | x₁ ... x_M)
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

- Random Variables
 - R: Raining
 - T: Traffic
 - L: Late for class!

P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

P(L T)			
+t	+	0.3	
+t	-	0.7	
-t	+	0.1	
-t	-1	0.9	

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R)			
+r 0.1			
-r	0.9		

P(T R)				
+r +t 0.8				
+r	-t	0.2		
-r	+t	0.1		
-r	-t	0.9		

- Any known values are selected
 - \bullet E.g. if we know $L=+\ell$ the initial factors are

P(R)		
+r	0.1	
-r	0.9	

P(T R)				
+r	+t	0.8		
+r	-t	0.2		
-r	+t	0.1		
-r	-t	0.9		

• Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved

Example: Join on R

$$P(R) \times P(T|R)$$

- Computation for each entry: pointwise products
- $\forall r, t : P(r,t) = P(r) \cdot P(t|r)$

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

P(R)				
+r 0.1				
-r	0.9			

P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

P(L T)			
+t	+1	0.3	
+t	-1	0.7	
-t	+1	0.1	
-t	-	0.9	

• Computing P(L|+r) the initial factors become:

P(-	+r)
+r	0.1

	P(L T)			
	+t	+	0.3	
	+t	-1	0.7	
	-t	+	0.1	
	-t	-	0.9	

• We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:

$$P(+r, L)$$

- To get our answer, just normalize this!
- That 's it!

General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Example

 $P(B|j,m) \propto P(B,j,m)$

P(B)

P(E)

P(A|B,E)

P(j|A)

P(m|A)

Choose A

P(A|B,E)

P(j|A)P(m|A)

P(j, m, A|B, E) \sum P(j, m|B, E)

P(B)

P(E)

P(j,m|B,E)

Example

$$P(B)$$
 $P(E)$ $P(j,m|B,E)$

Choose E

$$P(E)$$
 $P(j, m|B, E)$

$$P(j,m,E|B)$$
 \sum $P(j,m|B)$

Finish with B

$$P(B)$$
 $P(j,m|B)$

Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B)$$
 $P(E)$ $P(A|B,E)$ $P(j|A)$ $P(m|A)$

$$P(B|j,m) \propto P(B,j,m)$$

$$=\sum P(B,j,m,e,a)$$

marginal can be obtained from joint by summing out

$$= \sum P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

use Bayes' net joint distribution expression

$$\begin{array}{l}
\propto P(B, j, m) \\
= \sum_{e,a} P(B, j, m, e, a) \\
= \sum_{e,a} P(B)P(e)P(a|B, e)P(j|a)P(m|a) \\
= \sum_{e} P(B)P(e) \sum_{a} P(a|B, e)P(j|a)P(m|a) \\
= \sum_{e} P(B)P(e)f_{1}(B, e, j, m)
\end{array}$$

use x*(y+z) = xy + xz

$$= \sum_{e}^{\infty} P(B)P(e)f_1(B,e,j,m)$$

joining on a, and then summing out gives f₁

$$= P(B) \sum_{e} P(e) f_1(B, e, j, m)$$

use $x^*(y+z) = xy + xz$

$$= P(B)f_2(B, j, m)$$

joining on e, and then summing out gives f₂

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Another Variable Elimination Example

Query:
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

$$p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3) \\$$

Eliminate X_1 , this introduces the factor $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

$$p(Z)f_1(Z,y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_2 , this introduces the factor $f_2(Z,y_2) = \sum_{x_2} p(x_2|Z) p(y_2|x_2)$, and we are left with:

$$p(Z)f_1(Z, y_1)f_2(Z, y_2)p(X_3|Z)p(y_3|X_3)$$

Eliminate Z, this introduces the factor $f_3(y_1,y_2,X_3)=\sum_z p(z)f_1(z,y_1)f_2(z,y_2)p(X_3|z)$, and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

Normalizing over X_3 gives $P(X_3|y_1,y_2,y_3)$.

Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X₃ respectively).

Variable Elimination Ordering

For the query $P(X_n | y_1,...,y_n)$ work through the following two different orderings as done in previous slide: $Z, X_1, ..., X_{n-1}$ and $X_1, ..., X_{n-1}, Z$. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No

Worst Case Complexity?

CSP:

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7)$

 $P(X_i = 0) = P(X_i = 1) = 0.5$

$$Y_1 = X_1 \vee X_2 \vee \neg X_3$$

$$Y_8 = \neg X_5 \lor X_6 \lor X_7$$

$$Y_{1,2} = Y_1 \wedge Y_2$$

$$Y_{7,8} = Y_7 \wedge Y_8$$

$$Y_{1,2,3,4} = Y_{1,2} \wedge Y_{3,4}$$

$$Y_{5,6,7,8} = Y_{5,6} \wedge Y_{7,8}$$

$$Z = Y_{1,2,3,4} \wedge Y_{5,6,7,8}$$

- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 - Try it!!
- Cut-set conditioning for Bayes' net inference
 - Choose set of variables such that if removed only a polytree remains
 - Exercise: Think about how the specifics would work out!

Bayes' Nets

- ✓ Representation
- ✓ Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - ✓ Variable elimination (exact, worst-case exponential complexity, often better)
 - ✓ Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data