CSE 473: Artificial Intelligence

Bayes’ Nets: Inference

Dan Weld

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Bayes Net Representation

= A directed, acyclic graph, one node per random variable
= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents’ values

P(X‘a,]_ PN aﬂn)
» Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions
= To see what probability a BN gives to a full assignment,

multiply all the relevant conditionals together:

n
P(xl,mg, .. .:L’n) = H P(mi\parents(Xi))
i=1




Examle: Alarm Network
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Example: Alarm Network
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Independence in a BN

® |mportant question about a BN:
= Are two nodes independent given certain evidence?
= |f yes, can prove using algebra (tedious in general)
= |f no, can prove with a counter example

= Example:
P(X) =.9 P(YIX) =1 P(Z]Y) =.5
P(Y[#X) = P(Z|#Y)=.5

= Question: are X and Z necessarily independent?
= Answer: no. Example: low pressure causes rain, which causes traffic.
= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?

D-separation

B,

Q/\
CCDD‘ 5t




D-separation: Outline

= Study independence properties for triples

= Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering such
queries

Causal Chains

* This configuration is a “causal chain” * Guaranteed X independent of Z given Y?

) P(z,y,z)
il aaE e =D
J _ P(2)P(ylz) P(z|y)
€9--09§0 =

X: Low pressure Y: Rain Z: Traffic = P(z|y)

)
NS

1

Yes!

= Evidence along the chain “blocks” the
influence

P(z,y,z) = P(z)P(ylz)P(z|y)




Common Cause

* This configuration is a “common cause” * Guaranteed X and Z independent given Y?
Y: Project Project Plr.v. 2
due Due: P(Z’x,'y) — ( 7y7 )
P(z,y)
_ P)P(zly) P(zly)
P(y)P(zly)
= P(z|y)
X: Forums Z: Lab full
busy Yes!
P(x,y,z) = P(y)P(z|y)P(z|y) = Observing the cause blocks influence

between effects.

Common Effect

= Last configuration: two causes of one = Are X and Y independent?

effect (v-structures
( ) = Yes: the ballgame and the rain cause traffic, but

o they are not correlated
X: Raining Y: Ballgame

m g ;' E’ = Still need to prove they must be (try it!)
= Are Xand Y independent given Z?
@ @ = No: seeing traffic puts the rain and the ballgame in

competition as explanation.

L

= This is backwards from the other cases

= QObserving an effect activates influence between

b

Z: Traffic A

possible causes.




The General Case

The General Case

= General question: in a given BN, are two variables independent
(given evidence)?

= Solution: analyze the graph

= Any complex example can be broken
into repetitions of the three canonical cases




Active / Inactive Paths

= Question: Are X and Y conditionally independent given  Active Triples Inactive Triples
evidence variables {Z}?
= Yes, if Xand Y “d-separated” by Z
= Consider all (undirected) paths from Xto Y
= No active paths = independence!

= A path is active if each triple is active:
= Causal chain A — B — C where B is unobserved (either direction)
= Common cause A <— B — C where B is unobserved
= Common effect (aka v-structure)
A — B <— C where B or one of its descendents is observed

{ 2t

= All it takes to block a path is a single inactive segment

~d{ §

D-Separation

= Query: X; 1L le{Xk:l,---,Xk:n} ?

= Check all (undirected!) paths between X; and Xj

= |f one or more active, then independence not guaranteed

X NXGH{ Xkys ooy Xk, }

= Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

)

&

X X { Xk, s Xk, }

q




Example

R1 B Yes
RI B|T
R B|T’
Example

Lur|r Yes
L1 B Yes
L1 B|T
L1 B|T’
LI B|T,R VYes




Example

= Variables:

= R: Raining e

= T: Traffic
= D: Roof drips

= S:I'm sad 0 Q

= Questions:

T1 D
T 1 D|R Yes
T1 D|R,S

Structure Implications

= Given a Bayes net structure, can run d-separation
algorithm to build a complete list of conditional
independences that are necessarily true of the
form

X U Xi{ Xk, Xk, }

= This list determines the set of probability
distributions that can be represented




Computing All Independences

oMPUTE ALL THE
C\'N-D\:_PEN DENCES/

S
5%
htl
5o

Topology Limits Distributions

. (X LY, X U 2ZY1Z
Given some graph topology XUZ|VXLY|ZY 1 7]|X) (X1 2Zz|Y}

G, only certain joint
distributions can be @

encoded ® @

The graph structure
guarantees certain
(conditional) independences

(There might be more
independence)

Adding arcs increases the
set of distributions, but has
several costs

Full conditioning can encode
any distribution

PP
P -
PP PFP
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Bayes Nets Representation Summary

Bayes nets compactly encode joint distributions

Guaranteed independencies of distributions can be
deduced from BN graph structure

D-separation gives precise conditional independence
guarantees from graph alone

A Bayes’ net’ s joint distribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution

Bayes’ Nets

JRepresentation
JConditionaI Independences

= Probabilistic Inference
= Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
= Probabilistic inference is NP-complete
= Sampling (approximate)

= Learning Bayes’ Nets from Data

11



Inference

* Inference: calculating some = Examples:
useful quantity from a joint

probability distribution " Posterior probability

P(QIEL =e1,... B, = ¢p)

= Most likely explanation:

argmax, P(Q =q|E1 =ey...)

Pressure in
the RUQ History of
@ lcohol sbuse sugar

K Blood
transfusion carbohydrate
b metabolism
Presence of
:\liboﬂes to <
HBsAg n blood Dupugtren's
o

Presence of Hepatomegaly
= antibodies to i
resence of Presence ol HDV in blood,
hepatitis B antibodies
surface antigen Presence ™\ toHBcAgin

RN
Hepatic
encephalopat
Alpha

Jaundice in
pegmercy Antimitochondsial
antibodies

ED
palms
Haemarhagie Skin
Fiphe1 Weight oo i
Alpha2 o gan
(oD == =
spiders haemonhagie
spot

Onisko et al CBMI-99-27 (1999) Qe
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Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
= Evidence variables: Ei1...E,=e€1...¢4 X1, Xo,...Xn variables, too
= Query* variable:
Q- Y . Q All variables P(Q|€1 <o ek)
= Hidden variables: H;...H,

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize

entries consistent of Query and evidence
with the evidence 1

A\\(\\\\\\\\\’ ><

’ Z:ZP(Q761...ek)
P(Q’el ek) == Z P(Q hi...hreq. ._ek) q )
hi...hy XlaXQ""Xn P(Qlel-.-ek): EP(Q7€1"'€IC>

Inference by Enumeration in Bayes’ Net

= Given unlimited time, inference in BNs is easy ° e

= Reminder of inference by enumeration by example:

P(B | +j,+m) op P(B,+j,+m) 0
= ZP )P(a|B,e)P(+jla)P(+m]a)

=P (B)P(+¢e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+¢)P(—a|B,+¢e)P(+j| — a)P(+m| — a
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a




Inference by Enumeration?

|
\D

P(Antilock|observed variables) = 1

Inference by Enumeration vs. Variable Elimination

= Why is inference by enumeration so slow? = Idea: interleave joining and marginalizing!
= You join up the whole joint distribution before = Called “Variable Elimination”

you sum out the hidden variables = Still NP-hard, but usually much faster than
inference by enumeration

= First we'll need some new notation: factors

14



Factor Zoo

Factor Zoo |

P(T,W)
* Joint distribution: P(X,Y) T w | p
= Entries P(x,y) forall x, y hot sun | 04
" Sumstol hot rain | 0.1
cold sun 0.2
cold rain | 0.3
= Selected joint: P(x,Y)
= Aslice of the joint distribution P(cold, W)
= Entries P(x,y) for fixed x, all y T W P
= Sums to P(x) cold sun | 0.2

cold rain 0.3

= Number of capitals =
dimensionality of the table

15



Factor Zoo |l

= Single conditional: P(Y | x)
= Entries P(y | x) for fixed x, all y

= Sumstol

= Family of conditionals:
P(X 1Y)

= Multiple conditionals

= Entries P(x | y) forall x, y

= Sumsto |Y|

P(W |cold)
T W P
cold sun 0.4
cold rain 0.6
P(W|T)
T w P
hot sun 0.8 PWIh
hot rain 0.2 ( | Ot)
cold sun 0.4
cold rain 0.6 P(W|00ld)

Factor Zoo |l

= Specified family: P(y | X)

= Entries P(y | x) for fixed vy,
but for all x
= Sums to ... who knows!

P(rain|T)

T W P
hot rain 0.2
cold rain 0.6

|

P(rain|hot)
P(rain|cold)
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Factor Zoo Summary

* Ingeneral, when we write P(Y; ... Yy | X; ... X)
= |tisa “factor,” a multi-dimensional array

= Itsvalues are P(y; ... Yy | X; ... Xy)

= Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

P(R
= Random Variables +r( 0).1

= R: Raining @ - | 09

= T: Traffic P(T|R)
= |: Late for class! G i +tt 81§
-r +t 0.1
P(L) _ o e - | -t |09
= Z P(Ta tv L) +tP(I:-||T)0.3
r,t +t -l 0.7
=3 PP P(LIY) o




Inference by Enumeration: Procedural Outline

Track objects called factors
Initial factors are local CPTs (one per node)

@ L
P(R) P(T|R) P(L|T) f
Q %\’

E@

)

+r 0.1 +r | +t | 0.8 +t + 103
-r 0.9 +r | -t [ 0.2 +t - |07
-r | 4t ] 0.1 -t 4 |01

o |t o9 4 | 4 o9 Q 2
Any known values are selected ’5

* E.g.if we know L. = -/ the initial factors are

P(R) P(T|R) P(+4£|T)
+r 0.1 +r | +t | 0.8 +t + 103
-r 0.9 4r | -t [ 0.2 -t + |01

-r +t | 0.1
-r -t 109

Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

First basic operation: joining factors

Combining factors:
= Just like a database join % 1
= Get all factors over the joining variable

= Build a new factor over the union of the variables
involved

Example: Join on R

e P(R) X P(T|R) =—=> P(R,T)

+r 0.1 +r | +t [0.8 +r | +t | 0.08

-r 0.9 +r | -t [0.2 +r | -t | 0.02

0 -r | 4t |01 -r | +t ] 0.09
-r | -t]0.9 -r | -t | 0.81

= Computation for each entry: pointwise products V’r‘, t: P(T, t) = P(T) : P(tl?")

18



Example: Multiple Joins

Example: Multiple Joins f.».

1 8 |

+r | 0.1
. P(R, T

T122)  JoinR (1) JoinT

+r |+t ] 0.08
P(T|R) ——> |#|-t]002 >
+r | +t 0.8 -r | +t 1 0.09
+r| -t 0.2 -r|-t]081 P(R,T,L)
-r [ +t]0.1 +r | +t | 4+ | 0.024
-r| -t [0.9 +r +t -1 | 0.056
P(L|T) P(LlT) e +r -t + | 0.002

+r -t -l 0.018

+t | 41 |0.3 +t | 41 /0.3 -r +t + | 0.027
+t | -1 10.7 +t| -1 |0.7 -r +t -| 0.063
-t | 41 (0.1 -t | 41 (0.1 -r -t + | 0.081
-t | -1 0.9 -t | -11]0.9 -r -t -| 0.729




Operation 2: Eliminate

= Second basic operation: marginalization

= Take a factor and sum out a variable

= Shrinks a factor to a smaller one

= A projection operation

= Example:
P(R,T)
P(T

+r | +t | 0.08 sum R ( )

+r | -t | 0.02 I:> +t

-r | +t | 0.09 -t

r|-t]o0s81

Multiple Elimination
+r +t +| 0.024
P(R7T7 L) +r +t -l 0.056 Sum Sum
+r | -t | + [0002]| outR P(T, L) outT P(L)
+r -t -1 [0.018 +t | 41 | 0.051
o |+t | 4 |0.027 > [+t] - ]o0119 —> + 10134
o | +t | -1 |0.063 -t | +1 | 0.083 -l 10.886
r -t + | 0.081 -t | -1 |0.747
-r -t - OL729
(( P
)s

20



Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

(-

21



Traffic Domain

P(L) =7
= Inference by Enumeration = Variable Elimination
=55 P(LItP(r) P(tr) = P(L|)Y_ P(r)P(tlr)
t r \_'_.’ t T ‘—'—’
Joinonr Joinonr
[ ; ) \ Y J
Joinont Eliminate r
T L J
Eliminate r Join (')n t
T J L Y J
Eliminate t Eliminate t

Marginalizing Early! (aka VE)

P(R) lonR P(R,T) SumoutR JoinT SumoutT
+r | +t | 0.08 => P(T) => :
+r 1 0.1 +r | -t [ 0.02
-r 109 -r | +#t | 0.09 w1 017
-r|-t]081 t 1083
ew ' G
+r |+t [0.8 @ @
+r| -t [0.2
-r [+t 0.1 P(T7 L) P(L
-r]-t]09 e +t | +l | 0.051 ()
. | |0.134
P(L|T P(L|T +t| -1 ]0.119 +
(L|T) P(LIT) (LT -t | +1 ] 0.083 -1 _|0.866
+t | +1 |0.3 +t | 41 |0.3 -t | -10.747
st 107 A st 107
| +]0.1 FRRTErY -t | +1 (0.1
| -1]0.9 1 los | -1]0.9
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Evidence

= |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R)  P(L|T)
+r 0.1 +r | +t | 0.8 +t + 103
-r 0.9 +r -t |02 +t -l 0.7

-r | +t | 0.1 -t + | 0.1
-r | -t 109 -t -l [ 09

= Computing P(L| 4 r)the initial factors become:

P(+r) P(T|+7)  PUIT)

[+ ] 01 ] +r | +t |08 +t | + |03
+r -t 0.2 +t -l 0.7

-t +| 0.1

+ | -1 |o9

= We eliminate all vars other than query + evidence

Evidence Il

= Result will be a selected joint of query and evidence
= E.g.for P(L | +r), we would end up with:

P(+r,L) Normalize P(Ll +7)

+r | 4+l | 0.026 :> +l | 0.26
-1 10.74

+r| -1 | 0.074

= To get our answer, just normalize this!

= That’s it!
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General Variable Elimination

= Query: P(Q|E1 =e1,..--E, =c¢p)

= Start with initial factors:
= Local CPTs (but instantiated by evidence)

= While there are still hidden variables
(not Q or evidence):
= Pick a hidden variable H
= Join all factors mentioning H
= Eliminate (sum out) H

= in all remaining factors and normaliz ;
Join all remaining factors and normalize f%‘.:.X

Example

P(B|j,m) o< P(B,j,m)

P(B) P(E) P(A|B, E) P@jlA)  P(m|A)

Choose A
P(A|B, E)
P(j|A) : > P(j,m,A|B, E) : > P(j,m|B,E)
P(m|A)
P(B) P(E) P(j,m|B,E)

24



Example

P(B) P(E) P(j,m|B, E) Q °
Choose E e

P(E) ﬁ> P(j,m,E|B) [¥ > P(j,m|B) O ()
P(j,m|B, E)

P(B) P(j,m|B)

Finish with B

P(];,(ﬁiB) B> P(j,m, B) P(B\J}m)

Same Example in Equations

P(B|j,m) < P(B,j,m) OWpS

(4)
P(B)  P(E)  P(AIB.E)  P(lA)  P(m|4)

P(Blj,m) o P(B,j,m)

= Z P(B,j,m,e,a) marginal can be obtained from joint by summing out
e,a

= Y P(B)P(e)P(a|B,e)P(jla)P(m|a) use Bayes’ net joint distribution expression
e,a

= Z P(B)P(e) Z P(a|B,e)P(jla)P(mla) use x*(y+z) = xy + xz

= Z P(B)P(e)f1(B,e,j,m) joining on a, and then summing out gives f,
e
= P(B)>_ P(e)f1(B.e,j,m) use x*(y+z) =xy + xz
e
= P(B)f2(B,j,m) joining on e, and then summing out gives f,

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!
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Another Variable Elimination Example

Query: P(X3|Y1 =y1,Ys = yo, Y3 = y3) 9

Start by inserting evidence, which gives the following initial factors:
P(Z)p(X1]Z2)p(X2| Z)p(Xs3]| Z)p(y1| X1)p(y2| X2)p(y3] X5)
Eliminate X1, this introduces the factor f1(Z,y1) = >_,, p(@1]Z)p(y1|21), and @ @ @

we are left with:

(Z) [1(Z,y1)p(X2|2)p(X3]| Z)p(y2| X2)p(y3| X3)

Eliminate X, this introduces the factor f2(Z,y2) = 3_,, p(22|Z)p(y2|22), and
we are left with:

2 h (2, Z, X3|2)p(ys| X:
POVA(Z,y) [ 2 y)p (K| Z)p(yal Xo) Computational complexity critically

Eliminate Z, this introduces the factor f3(y1,y2, X3) = >, p(2) f1(z, y1) f2(2, y2)p(X3]2), depends on the largest factor being
and we are left: generated in this process. Size of factor
(Y1 X3), f(y1, 92, X) = number of entries in Fable_. In
example above (assuming binary) all
No hidden variables left. Join the remaining factors to get: factors generated are of size 2 - as
Fa(y1,y2, 93, X3) = P(ys| X3) f3(y1, y2, X3). they all only halve one variable (Z, Z,
and X, respectively).

Normalizing over X3 gives P(X3ly1,y2,¥3)-

Variable Elimination Ordering

= For the query P(X,|Yy,....Y,) work through the following two different orderings
as done in previous slide: Z, Xy, ..., X, ; and X, ..., X, ;, Z. What is the size of the
maximum factor generated for each of the orderings?

= Answer: 2™ versus 22 (assuming binary)

= In general: the ordering can greatly affect efficiency.




VE: Computational and Space Complexity

= The computational and space complexity of variable elimination is
determined by the largest factor

= The elimination ordering can greatly affect the size of the largest factor.
= E.g., previous slide’s example 2" vs. 2

= Does there always exist an ordering that only results in small factors?
= No!

Worst Case Complexity?

= CSP:

(:El Vg \/ﬁﬂ?g)/\("l‘l \/.773\/—'.1‘4)/\(.Z‘QVﬁLEQVJh;)/\(‘LTg\/ﬁﬂ?z;\/"JZ5)/\(562\/335\/337)/\($4V$5\/$6)/\(ﬁ$5VIG\/_|$7)/\(‘l$5\/ﬁ376\/£!77)

P(X;=0)=P(X;=1) =05
Y1 =X;VXoV X3

Ys = ~X5 V Xg V X
Yio=Y1AY,

Yrs=Y:AYs
Yipsa=Y12AY3,
Y5678 = Y56 A Yrg

Z =Y1234 Y5678

If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.
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Polytrees

= A polytree is a directed graph with no undirected cycles

= For poly-trees you can always find an ordering that is efficient
= Tryit!!

= Cut-set conditioning for Bayes’ net inference

= Choose set of variables such that if removed only a polytree remains
= Exercise: Think about how the specifics would work out!

Bayes’ Nets

7% Representation
« Conditional Independences

= Probabilistic Inference

& Enumeration (exact, exponential
complexity)

JVariabIe elimination (exact, worst-case
exponential complexity, often better)

o Inference is NP-complete

= Sampling (approximate)

= Learning Bayes’ Nets from Data

28



