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Probability Recap

Conditional probability P(aly) = P(z,y)
P(y)
Product rule P(z,y) = P(z|y)P(y)
Chain rule P(X1,Xo,... Xn) = P(X1)P(Xa]X1)P(X3|X1,X5). ..

n
= H P(XZ|X17X7,71)

P(yle) . .
Py L)

X, Y independent if and only if: Vz,y: P(z,y) = P(x)P(y)

Bayes rule P(zly) =

X and Y are conditionally independent given Z: X 1LY |Z
if and only if: Vx,y,z: P(z,y|z) = P(z[2) P(yl|2)




The Sword of Conditional Independence!

Slay | am a BIG joint
the distribution!
Basilisk!

harryp ter.wikia.corﬁ\/

X_U_Y|Z Means: Vz,y,z : P(x,y|z) = P(z|z)P(y|z)

Or, equivalently: Vz,y, z : P(x|z,y) = P(x|z)

Conditional Independence and the Chain Rule

= Chainrule: P(X1,Xo,...Xn) = P(Xl)P(X2|X1)P(X3|X1,X2) .

= Trivial decomposition:

P(Traffic, Rain,Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain, Traffic)

= With assumption of conditional independence:

P(Traffic, Rain,Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain)

» Bayes’ nets / graphical models help us express conditional independence assumptions




Bayes Nets: Big Picture

Bayes Nets: Big Picture

= Two problems with using full joint distribution tables
as our probabilistic models:
= Unless there are only a few variables, the joint is WAY too
big to represent explicitly

= Hard to learn (estimate) anything empirically about more
than a few variables at a time

distributions (models) using simple, local
distributions (conditional probabilities)

= More properly called graphical models

= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these
interactions are specified

* Bayes nets: a technique for describing complex joint @ @
ZN




Bayes Net Semantics

:
Bayes’ Net Semantics =00
= A set of nodes, one per random variable X P,) ... P4,)

A directed, acyclic graph

A conditional distribution for each node
= A collection of distributions over X, one for each
combination of parents’ values
P(Xlai...an)
* CPT: conditional probability table P(X|A7...Ap)
= Description of a noisy “causal” process
If a node has no parents, CPT = prior

A Bayes net = Topology (graph) + Local Conditional Probabilities




Probabilities in BNs 0.

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

n
P(z1,®2,...2n) = [[ P(xi|parents(X;))

i=1
Toothache @

P(+cavity, 4catch, -toothache)

= Example:

Probabilities in BNs ,@@

Why are we guaranteed that setting n
P(z1,22,...2n) = [|]| P(=zi|parents(X;))
results in a proper joint distribution? i=1

n
Chain rule (valid for all distributions):  P(z1,22,...2n) = [[ P(zilz1...2i—1)
i=1
Assume conditional independences: P(z;|x,...xi_1) = P(x;|parents(X;))

n
- Consequence:  P(z1,zp,...2n) = [[ P(xz|parents(X;))
i=1

Every BN represents a joint distribution, but
Not every distribution can be represented by a specific BN

= The topology enforces certain conditional independencies




Example: Coin Flips

P(X1) P(X5) P(Xn)
| h 0.5|| h 0.5|
t 0.5

P(h,h,t,h) =

Only distributions whose variables are absolutely independent can be
represented by a Bayes’ net with no arcs.

Example: Traffic

m P(+r,—t) = v *v =1/16




Example: Alarm Network

B | P(B) E | P(E)
+b | 0.001 Burglary @ +e | 0.002 -

-b  0.999 -e  0.998 A‘%"f

Example: Alarm Network

B | P(B) E | PE) wEz
+b | 0.001 +e | 0.002 3
-b  0.999 H -e 0.998

Al 1| PUA)
0.9

-a 0.05

um

-e -a 0.06

l!

-b +e -a 0.71

IIH

-a 0.999




Example: Alarm Network

o
B | P(B) E | PE) w T
+b | 0.001 +e | 0,002
b | 0.999 e | 0.998 ’1534
;é ) \
Al 1| Pula) ° N EYRE)
@] 4| 09 T | oo B | E| A | PAIBE
+a 'j 0.1 +a -m 0.3 +b +e +a 0.95
a | 4 | 005 a | +m | o001 th|+te|a] 005
-a 'j 0.95 -a -m 0.99 +b -e +a 0.94
+b | -e -a 0.06
) b | +e | +a 0.29
P(+b7 —€, —|—CL, -7 +m) — b | +e | -a 0.71
b | -e | +a 0.001
b | -e -a 0.999
Example: Alarm Network
e
B | P(B) ° e E | PE) wiE=
+b | 0.001 +e | 0.002
A | 1 | PUIA) ° A | M | P(M|A)
+a | 4 0.9 a3 | =6 0.7 B | E | A | PAIBE)
va | - | 01 va|-m| 03 thvej+a| 095
a | 4 | 005 a | +m | 001 th+e)a|l 005
-a _j 0.95 -a -m 0.99 +b -e +a 0.94
+b | -e -a 0.06
. -b | +e | +a 0.29
P(+b7 —€, —|—CL, —J +m) - b | +e | -a 0.71
P(+b)P(—e)P(+a|+b,—e)P(—j| + a)P(+m|+a) = | b | e | +a| 0001
-b | -e -a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7




Example: Hidden Markov Models ’i

R, | P, R, | PR,
7 0.7 7 0.7
f 03~ \| 0.3
P(R,) = 0.4
0 -
1{O Rl R2
R, PU,;) R, PU,;) R, PU,)
7 0.9 7 0.9 3 0.9
/ 0.2 f 02 | Vi 0.2

Example: Traffic

= Causal direction

P(R)
-r 3/4

(&)
P(T|R)
O

+r +t 3/4 I
-r +t 1/2 I

P(T, R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16




Example: Reverse Traffic

ar

= Reverse causality? e

> V\

P(T)
-t 7/16

P(R|T)
+t +r 1/3

|
= =
&l
| O
S~ S~
B[
[e2 38 )}

-t +r 1/7

Causality?

* When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal
= Sometimes no causal net exists over the domain
(especially if variables are missing)
= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(zj|lzy,...2i-1) = P(z;|parents(X;))
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Size of a Bayes' Net

= How big is a joint distribution over N = Both give you the power to calculate
Boolean variables?
P(X1,Xo,...Xpn)

2N
BNs: Huge space savings!

= How bigis an N-node net if nodes
have up to k parents?

O(N * 2k+1)

Also easier to elicit local CPTs

Also faster to answer queries (coming)

= A Bayes’ netisan
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:
= |nference: given a fixed BN, what is P(X | €)?
= Representation: given a BN graph, what kinds of distributions can it encode?

= Modeling: what BN is most appropriate for a given domain?

11



Bayes’ Nets

JRepresentation
= Conditional Independences
= Probabilistic Inference

= Learning Bayes’ Nets from Data

Conditional Independence

X andY are independent if

Ve,y P(z,y) = P(z)P(y) - ---> X1Y

X and Y are conditionally independent given Z
Vz,y,z P(z,ylz) = P(z|2)P(ylz) —--+ X 1Y|Z

(Conditional) independence is a property of a distribution

Example: Alarm AL Fire|Smoke

12



Bayes Nets: Assumptions

= Assumptions we are required to make to define the
Bayes net when given the graph:

P(zilzy - wi_1) = P(z|parents(X;))

= Beyond above “chain rule > Bayes net” conditional
independence assumptions

= Often additional conditional independences

= They can be read off the graph

= |mportant for modeling: understand assumptions made

when choosing a Bayes net graph

Example

OROROR0

= Conditional independence assumptions directly from simplifications in chain rule:

= Additional implied conditional independence assumptions?

13



Independence in a BN

* |mportant question about a BN:
= Are two nodes independent given certain evidence?
= |f yes, can prove using algebra (tedious in general)
= |f no, can prove with a counter example

Example:

= Question: are X and Z necessarily independent?

= Answer: no. Example: low pressure causes rain, which causes traffic.

= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?

D-separation: Outline

S®es,

Q)’\
CCDD‘ 5t
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D-separation: Outline

= Study independence properties for triples

= Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering such

queries
Causal Chains
* This configuration is a “causal chain” * Guaranteed X independentof Z? No!
= One example set of CPTs for which X is not
I~ independent of Z is sufficient to show this
////// ._L! independence is not guaranteed.
= Example:
P

A
a kﬂ\w w = Low pressure causes rain causes traffic,
( T high pressure causes no rain causes no

traffic
X: Low pressure Y: Rain Z: Traffic
= |In numbers:
P(z,y,2z) = P(z)P(y|z) P(z|y) Play [ +x)=1, Py [-x)=1,

P(+z | +y)=1,P(-z|-y)=1
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Causal Chains

* This configuration is a “causal chain” * Guaranteed X independent of Z given Y?

i i _ P(z,y,2)
anl P(zl|z,y) = Ple.y)

A
_ P@)PI)PCI)
W@ = P@PGR)

L=< £
P i
P

T

N\

i

X: Low pressure Y: Rain Z: Traffic = P(2|y)
P P(x)P P ves!
r,Yy,z) = x x z . T ”»
(@,y,2) (@) P(yl2)P(zly) = Evidence along the chain “blocks™ the
influence
Common Cause
* This configuration is a “common cause” * Guaranteed X independentof Z? No!
Y: Project Project = One example set of CPTs for which X is not

independent of Z is sufficient to show this
independence is not guaranteed.

due

= Example:

= Project due causes both forums busy
and lab full

= |n numbers:

=LP(x|-y)=1,
=1IP(_Z|_Y)=1

P(z,y,z) = P(y)P(x|y) P(z|y)
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Common Cause

* This configuration is a “common cause” * Guaranteed X and Z independent given Y?
Y: Project Project Plr.v. 2
due Due: P(Z’x,'y) — ( 7y7 )
P(z,y)
_ P)P(zly) P(zly)
P(y)P(zly)
= P(z|y)
X: Forums Z: Lab full
busy Yes!
P(x,y,z) = P(y)P(z|y)P(z|y) = Observing the cause blocks influence

between effects.

Common Effect

= Last configuration: two causes of one = Are X and Y independent?

effect (v-structures
( ) = Yes: the ballgame and the rain cause traffic, but

o they are not correlated
X: Raining Y: Ballgame

m g ;' E’ = Still need to prove they must be (try it!)
= Are Xand Y independent given Z?
@ @ = No: seeing traffic puts the rain and the ballgame in

competition as explanation.

L

= This is backwards from the other cases

= QObserving an effect activates influence between

b

Z: Traffic A

possible causes.

17



The General Case

The General Case

= General question: in a given BN, are two variables independent
(given evidence)?

= Solution: analyze the graph

= Any complex example can be broken
into repetitions of the three canonical cases

18



Reachability

= Recipe: shade evidence nodes, look
for paths in the resulting graph

= Attempt 1: if two nodes are connected 6
by an undirected path not blocked by
a shaded node, they are conditionally

independent
e @ @

= Almost works, but not quite f’”é}\ ~—
* Where does it break? SRS B -

/ /
= Answer: the v-structure at T doesn’t count / // [ /
as a link in a path unless “active” L~ ‘

Active / Inactive Paths

* Question: Are X and Y conditionally independent given  Active Triples
evidence variables {Z}?
= Yes, if Xand Y “d-separated” by Z
= Consider all (undirected) paths from Xto Y
= No active paths = independence!

;

= A path is active if each triple is active:
= (Causal chain A — B — C where B is unobserved (either direction)
= Common cause A <= B — C where B is unobserved
= Common effect (aka v-structure)
A — B <— C where B or one of its descendents is observed

= All it takes to block a path is a single inactive segment Qg/CJ

Inactive Triples

0~0-0
oo
o
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D-Separation

= Query:  X; 1L X;{ Xk, .00y Xio, } ?

= Check all (undirected!) paths between X; and X

= |f one or more active, then independence not guaranteed

= QOtherwise (i.e. if all paths are inactive), @ ]
then independence is guaranteed

X; 1 X;{ Xk oy X, } /@a@c% @
)

Example

R B Yes 9 @

RIB|T
R1LB|T (1)

20



Example

LUT|T Yes
L1 B Yes
L1 B|T
L1 B|T
L1 B|T,R VYes

Example

= Variables:
= R: Raining
= T: Traffic
= D: Roof drips
= S: I'm sad
= Questions:
T D

T 1 D|R Yes
Tl D|R, S

21



Structure Implications

= Given a Bayes net structure, can run d-
separation algorithm to build a complete list of
conditional independences that are necessarily
true of the form

X X { Xk, Xk, }

= This list determines the set of probability
distributions that can be represented

Computing All Independences

MPUTE ALL THE
C\’KDEPEN DENCES!

R
5%
hcg
5o
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Topology Limits Distributions

. (XLY,XUZYLUZ,
Given some graph topology XU Z|V.XLY|ZY 17| X) {X1Z|Y}

G, only certain joint
distributions can be @

encoded @ @

The graph structure
guarantees certain
(conditional) independences

(There might be more
independence)

Adding arcs increases the

set of distributions, but has
several costs Q&) 65%)
Full conditioning can encode

any distribution

PP PFP

Bayes Nets Representation Summary

= Bayes nets compactly encode joint distributions

Guaranteed independencies of distributions can be
deduced from BN graph structure

= D-separation gives precise conditional independence
guarantees from graph alone

A Bayes’ net’ s joint distribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution
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Bayes’ Nets

JRepresentation
JConditionaI Independences

= Probabilistic Inference
* Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
= Probabilistic inference is NP-complete
= Sampling (approximate)

= Learning Bayes’ Nets from Data
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