CSE 473: Artificial Intelligence

Daniel Weld

[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Probability Recap

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

$$P(x,y) = P(x|y)P(y)$$

Chain rule

$$P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$$

$$= \prod_{i=1}^n P(X_i|X_1, ..., X_{i-1})$$

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

Bayes rule

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

• X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$

• X and Y are conditionally independent given Z: $X \!\perp\!\!\!\perp \!\!\!\perp \!\!\!\perp Y | Z$

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

The Sword of Conditional Independence!

Slay the Basilisk!

 $X \!\perp\!\!\!\perp\!\!\!\perp\!\!\!\perp\!\!\!\perp Y \big| Z \qquad \text{Means: } \forall x,y,z : P(x,y|z) = P(x|z)P(y|z)$

Or, equivalently: $\forall x, y, z : P(x|z, y) = P(x|z)$

4

Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$
- Trivial decomposition:

$$\begin{split} P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) = \\ P(\mathsf{Rain}) P(\mathsf{Traffic}|\mathsf{Rain}) P(\mathsf{Umbrella}|\mathsf{Rain}, \mathsf{Traffic}) \end{split}$$

• With assumption of conditional independence:

P(Traffic, Rain, Umbrella) = P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

Bayes' nets / graphical models help us express conditional independence assumptions

Bayes' Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per random variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process
- If a node has no parents, CPT = prior

$$P(A_1) \dots P(A_n)$$
 $A_1 \dots A_n$

 $P(X|A_1\ldots A_n)$

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:

P(+cavity, +catch, -toothache)

Probabilities in BNs

- Why are we guaranteed that setting results in a proper joint distribution? $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$
- Chain rule (valid for all distributions): $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$
- Assume conditional independences: $P(x_i|x_1,...x_{i-1}) = P(x_i|parents(X_i))$
 - \rightarrow Consequence: $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$
- Every BN represents a joint distribution, but
- Not every distribution can be represented by a specific BN
 - The topology enforces certain conditional independencies

Example: Coin Flips

. . .

$$P(X_1)$$
h 0.5
t 0.5

$$P(X_2)$$
h 0.5
t 0.5

. . .

$$P(X_n)$$
h 0.5
t 0.5

$$P(h, h, t, h) =$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

 $P(+r,-t) = \frac{1}{4} * \frac{1}{4} = \frac{1}{16}$

Example: Alarm Network

В

$$P(+b, -e, +a, -j, +m) =$$

Е	P(E)
+e	0.002
-е	0.998

	Α	М	P(M A)
	+a	+m	0.7
	+a	-m	0.3
(M)	-a	+m	0.01
	-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

Е	P(E)
+e	0.002
-е	0.998

Α	A M P(M A	
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

$$P(+b, -e, +a, -j, +m) = P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) = 0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$$

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-e	-a	0.999

Example: Reverse Traffic

Reverse causality?

P(T,R)			
+r	+t	3/16	
+r	-t	1/16	
-r	+t	6/16	
-r	-t	6/16	

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

BNs need not actually be causal

- Sometimes no causal net exists over the domain (especially if variables are missing)
- E.g. consider the variables *Traffic* and *Drips*
- End up with arrows that reflect correlation, not causation

What do the arrows really mean?

- Topology may happen to encode causal structure
- Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

Size of a Bayes' Net

How big is a joint distribution over N Boolean variables?

2^N

How big is an N-node net if nodes have up to k parents?

 $O(N * 2^{k+1})$

- Both give you the power to calculate $P(X_1, X_2, ... X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Recap: Bayes' Nets

 A Bayes' net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is P(X | e)?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

Bayes' Nets

- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Conditional Independence

X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) \longrightarrow X \perp \!\!\! \perp Y$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \!\!\! \perp Y|Z$$

- (Conditional) independence is a property of a distribution
- Example: $Alarm \perp Fire | Smoke |$

Bayes Nets: Assumptions

Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

Example

- Conditional independence assumptions directly from simplifications in chain rule:
- Additional implied conditional independence assumptions?

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they *could* be independent: how?

D-separation: Outline

D-separation: Outline

- Study independence properties for triples
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering such queries

Causal Chains

• This configuration is a "causal chain"

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

- Guaranteed X independent of Z? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:

$$P(+y \mid +x) = 1, P(-y \mid -x) = 1,$$

 $P(+z \mid +y) = 1, P(-z \mid -y) = 1$

Causal Chains

• This configuration is a "causal chain"

X: Low pressure

Y: Rain

Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

• Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$

Yes!

Evidence along the chain "blocks" the influence

Common Cause

■ This configuration is a "common cause"

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

- Guaranteed X independent of Z? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Project due causes both forums busy and lab full
 - In numbers:

$$P(+x | +y) = 1, P(-x | -y) = 1, P(+z | +y) = 1, P(-z | -y) = 1$$

Common Cause

• This configuration is a "common cause"

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Yes!

 Observing the cause blocks influence between effects.

Common Effect

Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

The General Case

- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be broken into repetitions of the three canonical cases

Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure)

 $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed

All it takes to block a path is a single inactive segment

Inactive Triples

D-Separation

- Query: $X_i \perp \!\!\! \perp X_j | \{X_{k_1},...,X_{k_n}\}$?
- lacktriangle Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

$$X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp \!\!\!\perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Example

$$R \perp \!\!\! \perp B$$
 Yes $R \perp \!\!\! \perp B | T$ $R \perp \!\!\! \perp B | T'$

Example

$$L \! \perp \! \! \perp \! \! T' | T$$
 Yes

$$L \! \perp \! \! \! \perp \! \! B$$
 Yes

$$L \! \perp \! \! \perp \! \! B | T$$

$$L \! \perp \! \! \perp \! \! B | T'$$

$$L \! \perp \! \! \perp \! \! B | T, R$$
 Yes

Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:

$$T \bot\!\!\!\!\bot D$$

$$T \bot\!\!\!\bot D | R$$
 Yes

$$T \bot\!\!\!\!\bot D | R, S$$

Structure Implications

 Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 This list determines the set of probability distributions that can be represented

Computing All Independences Compute All The X 2 INDEPENDENCES! X 2 X 2

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets

- **✓** Representation
- **✓** Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes' Nets from Data