CSE 473: Artificial Intelligence
Bayes’ Nets

Daniel Weld

[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Hidden Markov Models

Two random variable at each time step
* Hidden state, X;
= Observation, E,

Conditional Independences

Dynamics don’t change
= E.g, P(X, | X;) = P(Xy | X;)




Example

R, | Pr,)

. 0.7

= An HMM is defined by:

® |nitial distribution: P(X1)
* Transitions: P(X¢| Xe—1)
* Emissions: P(F|X)

HMM Computations

= Given
® parameters
= evidence E,.,=¢,.,
» |nference problems include:
» Filtering, find P(XJe,.,) for all t
= Smoothing, find P(Xle,.,) for all t
= Most probable explanation, find
X* )., = Argmaxs,, P(x, yle;.,)




Base Case Inference (In Forward Algorithm)
“Observation” “‘Passage of Time”
I
®)
=
P(Xile1) P(X5)
P(z1le1) = P(z1,e1)/P(e1) P(x) =) P(z1,23)

oxx,; P(z1,e1) = P(z1)P(x2|z1)
= P(z1)P(e1|r1) 1

Particles Filtering: Representation

= Represent P(X) with a list of N particles (samples), Generally, N << |X|

= E.g. P(ghost@(3.3)) =5/10=0.5 P(x)
Distribution

Particles: (3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)




Particle Filtering: Summary

Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
o @e o~ ® ° ° () @
@ () o CJ (O3]
(%) ) @ @ Q@ ® ) ...
() o :
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(32) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=4 (3,3)
(3,2) (3,2) (3,2) w=9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=9 (3,2)
(2,3) (2,2) (2,2) w=4 (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles




Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles

Which Algorithm?

Exact filter, uniform initial beliefs

SCORE: -1




Complexity of the Forward Algorithm?

= We are given evidence at each time and want to know

By(X) = P(X¢le1:t) If only need P(x|e) at the

end, only normalize there

= We use the single (time-pas servation) updates:

P(zile1:) ocx Ple|z) Y. Platlri—1)P(zi-1,e1:4-1)

Ti—1

= Complexity? O(]X]?) time & O(X) space

But | X| is exponential in the number of state variables ®

Why Does | X| Grow?

= 1 Ghost: k (eg 9) possible positions in maze °

= 2 Ghosts: k? combinations

= N Ghosts: kN combinations
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Joint Distribution for Snapshot of World

= |t gets big...

01 005 02 007 0.03 005 01 03

The Sword of Conditional Independence!

Slay | am a BIG joint
the distribution!
Basilisk!

XJ_l_Y|Z Means: Vz,y,z : P(z,y|z) = P(z|z)P(y|z)

Or, equivalently: Vx,y,z : P(x|z,y) = P(z|z)




HMM Conditional Independence

= HMMs have two important independence properties:
= Markov hidden process, future depends on past via the present

HMM Conditional Independence

= HMMs have two important independence properties:
= Markov hidden process, future depends on past via the present
= Current observation independent of all else given current state




Conditional Independence in Snapshot

= Can we do something here?
= Factor X into product of (conditionally) independent random vars?

&

= Maybe also factor E @

Yes! with Bayes Nets




Dynamic Bayes Nets

We want to track multiple variables over time, using
multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time
Variables from time t can condition on those from t-1

t=1

—+

=2

9,
|

)
\|

Dynamic Bayes nets are a generalization of HMMs

[Demo: pacman sonar ghost DBN model (L15D6)]
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DBN Particle Filters

= A particle is a complete sample for a time step

= |nitialize: Generate prior samples for the t=1 Bayes net
= Example particle: G;*=(3,3) G,*=(5,3)

= Elapse time: Sample a successor for each particle
= Example successor: G,2= (2,3) G," = (6,3)

= Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample

= Likelihood: P(E,? | G,) * P(E,® | G,b)

= Resample: Select prior samples (tuples of values) in proportion to their likelihood

Probabilistic Models

* Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
= Example: value of information
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Independence

SN

Independence

= Two variables are independent if:
Vz,y: P(z,y) = P(z)P(y)

= This says that their joint distribution factors into a product two
simpler distributions

= Another form:

Vz,y : P(z|y) = P(x)

= Wewrite: X [l Y

= |ndependence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity, Toothache}?

<D
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Example: Independence?

P(T)
T P
hot 0.5
Py (T, W) cold | 0.5 PQ(Ta W)

T W P T w P
hot sun | 0.4 hot sun | 0.3
hot rain | 0.1 hot rain | 0.2
cold sun | 0.2 cold sun | 0.3
cold rain | 0.3 P(W) cold rain | 0.2

% P
sun 0.6
rain 0.4

Example: Independence

= N fair, independent coin flips:

P(X1) P(X2) P(Xy)
H |05 H |05 o H |05
T 0.5 T 0.5 T 0.5
. o
—

P(Xl X21- Xn
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Conditional Independence

P(Toothache, Cavity, Catch)

If I have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:
= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’ t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily

Conditional Independence

» Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= X is conditionally independent of Y given Z XJ_|_Y|Z

if and only if:
Va,y,z 1 P(x,y|z) = P(x|2) P(y|2)
or, equivalently, if and only if

Va,y,z 1 P(z|z,y) = P(z]z)
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Conditional Independence

= What about this domain:

= Traffic
= Umbrella
= Raining

Conditional Independence and the Chain Rule

= Chainrule: P(X1,Xo,...Xn) = P(Xl)P(X2|X1)P(X3|X1,X2) .

= Trivial decomposition:

P(Traffic, Rain,Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain, Traffic)

= With assumption of conditional independence:

P(Traffic, Rain,Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain)

= Bayes’ nets/ graphical models help us express conditional independence assumptions
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Ghostbusters Chain Rule

Each sensor depends only

on where the ghost is P(T,B,G) = P(G) P(T|G) P(B|G)
That means, the two sensors are T B G P(T,B,G)
conditionally independent, given the

ghost position +t tb | +g 0.16

+t +b -g 0.16
+t -b +g 0.24
+t -b -g 0.04

T: Top square is red
B: Bottom square is red
G: Ghost is in the top

Givens: -t +b +g 0.04
P(+g)=0.5

P(+t | +g)=0.8 t ] +b| g | 024
P(+t | -g)=04 _ _

P(+b | +5)=0.4 t b +g 0.06
P(+b| -g)=028 t | b | -g 0.06

Number of Parameters?

Bayes’ Nets: Big Picture




Bayes Nets: Big Picture

= Two problems with using full joint distribution tables
as our probabilistic models:

Unless there are only a few variables, the joint is WAY too
big to represent explicitly

Hard to learn (estimate) anything empirically about more
than a few variables at a time

* Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local

distributions (conditional probabilities)

More properly called graphical models
We describe how variables locally interact

Local interactions chain together to give global, indirect
interactions

For about 10 min, we’ll be vague about how these
interactions are specified
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Example Bayes’ Net: Car

alternator fanbelt
broken brokel

fuel line starter
blocked broke

Graphical Model Notation

= Nodes: variables (with domains)
= Can be assigned (observed) or unassigned

(unobserved)
= Arcs: interactions
= Similar to CSP constraints @
= |ndicate “direct influence” between variables
Toothache @

= Formally: encode conditional independence
(more later)

= For now: imagine that arrows mean ,
direct causation (in general, they don t!)
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Example: Coin Flips

= N independent coin flips

= No interactions between variables: absolute independence

Example: Traffic

» Variables:
= R:ltrains b
= T:There is traffic
= Model 1: independence = Model 2: rain causes traffic

O,
o &

= Why is an agent using model 2 better?
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Example: Traffic Il

= |Let’s build a causal graphical model!
= Variables

= T: Traffic

= R:ltrains

= L:Low pressure
D: Roof drips
B: Ballgame
C: Cavity

® ®

Example: Alarm Network

= Variables

= B:Burglary

= A: Alarm goes off

= M: Mary calls
= J:John calls
= E: Earthquake!

®
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Bayes Net Semantics

Bayes’ Net Semantics =it

= Aset of nodes, one per variable X P@,) ... P4,)
= Adirected, acyclic graph

= A conditional distribution for each node

= A collection of distributions over X, one for each
combination of parents’ values

P(Xlai...an)
P(X|A1...A
= CPT: conditional probability table ( | 1 n)

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
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Probabilities in BNs B0

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

n
P(z1,®2,...2n) = [[ P(xi|parents(X;))

i=1
Toothache @

P(+cavity, 4catch, -toothache)

= Example:

Probabilities in BNs

X
o

L )

Why are we guaranteed that setting

n
P(:L’l, xo, .. .:L’n) = H P(a:ﬂparents(Xi))
i=1
results in a proper joint distribution?

n
Chain rule (valid for all distributions): P(z1,22,...2n) = [[ Pwlz1...2i—1)
i=1
Assume conditional independences: P(zi|z1,...2;_1) = P(z;|parents(X;))
n
- Consequence:  P(z1,%2,...zn) = || P(x|parents(X;))
i=1
Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies
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Example: Coin Flips

& ®

P(X1) P(X5)
h 0.5 h 0.5
t 0.5 t 0.5

P(h,h,t,h) =

Only distributions whose variables are absolutely independent can be

()

P(Xn)
h |05
t |os

represented by a Bayes ' net with no arcs.

Example: Traffic

O,

P(R)

+r

1/4

3/4

P(T|R)

+r

+t

3/4

1/4

+t

1/2

1/2

P(+r,—t) =
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Example: Alarm Network

B P(B) E P(E)
+b | 0.001 +e | 0.002 3
b | 0.999 -e | 0.998 |
B | E | A | PA|BE)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b e | +a 0.94
A J P(J|A) A M P(M|A) +b e -a 0.06
+a | 4 0.9 +a | +m 0.7 b | +e | +a 0.29
+a | - 0.1 +a | -m 0.3 b | +e | -a 0.71
-;a | 4 0.05 -a | +m 0.01 b | e | +a 0.001
-a -j 0.95 -a | -m 0.99 b | -e| -a 0.999

Example: Traffic

= Causal direction

P(R)

+r 1/4

-r 3/4

P(T|R)

+r

+t

3/4

1/4

+t

1/2

1/2

P(T, R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16
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Example: Reverse Traffic

= Reverse causality?

P(T)

° +t 9/16
-t 7/16
P(R|T)
+r -t 1/16
+t +r 1/3
e - 2/3 -r +t 6/16
-r -t 6/16
-t +r 1/7
-r 6/7
Causality?

* When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)

= E.g. consider the variables Traffic and Drips

= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(zj|lzy,...2i-1) = P(z;|parents(X;))
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Bayes’ Nets

= So far: how a Bayes’ net encodes a joint
distribution

= Next: how to answer queries about that
distribution
= Today:

= First assembled BNs using an intuitive notion of
conditional independence as causality

= Then saw that key property is conditional independence

= Main goal: answer queries about conditional
independence and influence

= After that: how to answer numerical queries
(inference)
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