CSE 473: Artificial Intelligence

Bayes' Nets

Daniel Weld

[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Hidden Markov Models

Two random variable at each time step

- Hidden state, X_i
- Observation, E_i

Conditional Independences Dynamics don't change

• E.g., $P(X_2 \mid X_1) = P(X_{18} \mid X_{17})$

Example

- An HMM is defined by:
 - Initial distribution: $P(X_1)$
 - lacktriangleright Transitions: $P(X_t|X_{t-1})$
 - ullet Emissions: P(E|X)

HMM Computations

- Given
 - parameters
 - evidence $E_{1:n} = e_{1:n}$
- Inference problems include:
 - Filtering, find $P(X_t|e_{1:t})$ for all t
 - Smoothing, find $P(X_t|e_{1:n})$ for all t
 - Most probable explanation, find

$$x*_{1:n} = \operatorname{argmax}_{x_{1:n}} P(x_{1:n}|e_{1:n})$$

Base Case Inference (In Forward Algorithm)

"Observation"

$$P(X_1|e_1)$$

$$P(x_1|e_1) = P(x_1, e_1)/P(e_1)$$

$$\propto_{X_1} P(x_1, e_1)$$

$$= P(x_1)P(e_1|x_1)$$

"Passage of Time"

$$P(X_2)$$

$$P(x_2) = \sum_{x_1} P(x_1, x_2)$$
$$= \sum_{x_1} P(x_1) P(x_2 | x_1)$$

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles

Which Algorithm?

Exact filter, uniform initial beliefs

Complexity of the Forward Algorithm?

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

If only need P(x|e) at the end, only normalize there

We use the single (time-passage+observation) updates:

$$P(x_t|e_{1:t}) \propto_X P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}, e_{1:t-1})$$

■ Complexity? O(|X|²) time & O(X) space

But |X| is *exponential* in the number of state variables ⊗

Why Does |X| Grow?

- 1 Ghost: k (eg 9) possible positions in maze
- 2 Ghosts: k² combinations

•

N Ghosts: k^N combinations

13

Joint Distribution for *Snapshot* of World

■ It gets big...

15

The Sword of Conditional Independence!

Slay the Basilisk!

 $X \!\perp\!\!\!\perp\!\!\!\perp\!\!\!\perp\!\!\!\perp Y|Z \qquad \text{Means: } \forall x,y,z : P(x,y|z) = P(x|z)P(y|z)$

Or, equivalently: $\forall x,y,z: P(x|z,y) = P(x|z)$

16

HMM Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present

HMM Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present
 - Current observation independent of all else given current state

Conditional Independence in Snapshot

- Can we do something here?
- Factor X into product of (conditionally) independent random vars?

Maybe also factor E

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

Dynamic Bayes nets are a generalization of HMMs

[Demo: pacman sonar ghost DBN model (L15D6)]

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a | G_1^a) * P(E_1^b | G_1^b)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Independence

Independence

■ Two variables are *independent* if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

 $P_1(T,W)$

Т	W	Р	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

P(T)

`	
Т	Р
hot	0.5
cold	0.5

 $P_2(T,W)$

Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

P(W)	
W	Р
sun	0.6

rain

Example: Independence

N fair, independent coin flips:

$P(X_2)$		
Н	0.5	
Т	0.5	

$$\begin{array}{c|c} P(X_n) \\ \hline H & 0.5 \\ \hline T & 0.5 \\ \end{array}$$

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)

- P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
- P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
- One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

 $X \! \perp \! \! \perp \! \! Y | Z$

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$
- Trivial decomposition:

P(Traffic, Rain, Umbrella) = P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)

With assumption of conditional independence:

P(Traffic, Rain, Umbrella) = P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

Bayes' nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

P(T,B,G) = P(G) P(T|G) P(B|G)

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, give ghost position
- T: Top square is red B: Bottom square is red G: Ghost is in the top
- Givens:

P(+g) = 0.5P(+t | +g) = 0.8 P(+t | -g) = 0.4 P(+b | +g) = 0.4 P(+b | -g) = 0.8

are iven the	Т	В	G	P(T,B,G)
	+t	+b	+g	0.16
	+t	+b	-g	0.16
	+t	-b	+g	0.24
0.50	+t	-b	-g	0.04
	-t	+b	+g	0.04
	-t	+b	-g	0.24
0.50	-t	-b	+g	0.06
	-t	-b	-g	0.06

Number of Parameters?

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Example: Coin Flips

N independent coin flips

. . .

No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic

Why is an agent using model 2 better?

Model 2: rain causes traffic

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

$$P(A_1)$$
 $P(A_n)$
 A_1 \cdots A_n

 $P(X|A_1 \dots A_n)$

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:

P(+cavity, +catch, -toothache)

Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $P(x_1,x_2,\ldots x_n) = \prod_{i=1}^n P(x_i|x_1\ldots x_{i-1})$
- Assume conditional independences: $P(x_i|x_1,...x_{i-1}) = P(x_i|parents(X_i))$

$$\rightarrow$$
 Consequence: $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

$$P(X_1)$$
h 0.5
t 0.5

$$P(X_2)$$
h 0.5
t 0.5

$P(X_n)$		
h	0.5	
t	0.5	

$$P(h, h, t, h) =$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

$$P(+r,-t) =$$

Example: Reverse Traffic

Reverse causality?

P(T,R)			
+r	+t	3/16	
+r	-t	1/16	
-r	+t	6/16	
-r	-t	6/16	

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Today:
 - First assembled BNs using an intuitive notion of conditional independence as causality
 - Then saw that key property is conditional independence
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

