CSE 473: Artificial Intelligence

Particle Filters for HMMs

[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Example
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= An HMM is defined by:
® |nitial distribution: P(X1q)
= Transitions: P(X¢| Xe—1)
= Emissions: P(FE|X)




Conditional Independence

= HMMs have two important independence properties:
= Markov hidden process, future depends on past via the present

Conditional Independence

= HMMs have two important independence properties:
= Markov hidden process, future depends on past via the present
= Current observation independent of all else given current state




Filtering (aka Monitoring)

= The task of tracking the agent’s belief state, B(x), over time

= B(x) is a distribution over world states — repr agent knowledge

= We start with B(X) in an initial setting, usually uniform
= As time passes, or we get observations, we update B(X)

= Many algorithms for this:
= Exact probabilistic inference
= Particle filter approximation
= Kalman filter (one method — Real valued values)

= invented in the 60’for Apollo Program — real-valued state, Gaussian noise

Example: Robot Localization

l TS
Prob 0 1

t=0
Sensor model: never more than 1 mistake

Motion model: may not execute action with small prob.

Example from Michael
Pfeiffer




Example: Robot Localization

Prob 0 1

t=1

Example: Robot Localization

Prob 0 1

t=2




Pacman — Sonar (P4)
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[Demo: Pacman — Sonar — No Beliefs(L14D1)]

Inference: Base Cases

“Observation” “Passage of Time”

P(X1|€1) P(XQ)
P(z1le1) = P(x1,e1)/P(e1) P(z) =Y P(z1,z7)
1
ocx; P(z1,e1) = P(x1)P(aoler)

= P(z1)P(e1l|r1)




Summary: Online Belief Updates

Every time step, we start with current P(X | evidence)
We update for time:

P(ziler1—1) = > P(mi—1le14—1) - P(xt|wi—1)
Ti1

We update for evidence:

P(xlert) ocx P(atler4—1) - Petlat)

OO,

iy
o

The forward algorithm does both at once (and doesn’ t normalize)

The Forward Algorithm

= We are given evidence at each time and want to know

By(X) = P(X¢le1:)

= We use the single (time-passage+observation) updates;

P(xiler:s) oxx Pz, e1:4)

We can normalize as we go if we
want to have P(x|e) at each time
step, or just once at the end...

= Z P(mt—lwrtvelit)

Ti—1

= > P(xi_1,e1:4-1)P(xt|mi_1) P(et|zy)

Ti—1

= P(etzt) Y, P(xilri—1)P(xi—1,e1:0-1)

Ti—1




Video of Demo Pacman — Sonar (with beliefs)

Example: Weather HMM [

T

B’(+r) = 0.5 B’(+r) = 0.627
B(r) 0.5 /B(r) =0.373
B(+r) = 0.5 B(+r) = 0818 B(+r) = 0.883
B(-r) =0.5 B(-r) =0.182 B(-r) =0.117
Rai Rai
¢ ainy ain, Rt Rt+1 P(Rt+1|Rt) Rt Ut P(U‘|Rt)
+r | 4r 0.7 +r | +u 0.9
+ro | or 0.3 +r | -u 01
Umbrella, Umbrella, -r +r 0.3 -r | +u 0.2
-r -r 0.7 -r -u 0.8




Complexity of the Forward Algorithm?

= We are given evidence at each time and want to know
By(X) = P(X¢le1:)

* We use the single (time-passage+observation) pndatec-

We can normalize as we go if we
want to have P(x|e) at each time
step, or just once at the end...

P($t|€1:t) XX P(ﬁtael:t)

= Z P(mt—laxtvellt)

Ty

= > P(xi_1,e1:4—1)P(xt|wi—1) P(et|zt)
T—1

= P(eglzt) Y P(atlei—1)P(ap—_1,e14-1)

Tt—1

= Complexity? O(]|X]?) time & O(X) space

Particle Filtering




Particle Filtering Overview

= Approximation technique to solve filtering problem
= Represents P distribution with samples

= Still operates in two steps
= Elapse time
" Incorporate observations

52

Particle Filtering

= Filtering: approximate solution 00 | 01 | 00

= Sometimes |X] is too big to use exact inference
= |X| may be too big to even store B(X) 0.0 | 0.0 | 0.2

= E.g. Xis continuous
0.0 0.2 0.5

= Solution: approximate inference

= Track samples of X, not all values
Samples are called particles
Time per step is linear in the number of samples

But: number needed may be large ®
In memory: list of particles, not states

= This is how robot localization works in practice

= Particle is just new name for sample




Representation: Particles

= QOur representation of P(X) is now a list of N particles (samples) S |o%
= Generally, N << |X| ® s
= Storing map from X to counts would defeat the purpose

) . . Particles: (3,3)

= P(x) approximated by (number of particles with value x) / N (2,3)

= More particles, more accuracy (3,3)

(3,2)

(3,3)

(3,2)

(1,2)

(3,3)

(3,3)

(2,3)

Representation: Particles
= Qur representation of P(X) is now a list of N particles (samples) S |o%
= Generally, N << |X| ® s
= Storing map from X to counts would defeat the purpose

. . Particles: (3,3)

= P(x) approximated by (number of particles with value x) / N (2,3)

= More particles, more accuracy (3,3)

(3,2)

. (3,3)

= Whatis P((3,3))? 5/10 = 50% (3,2)

(1,2)

(3,3)

(3,3)

(2,3)
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Representation: Particles

= QOur representation of P(X) is now a list of N particles (samples) S |o%
= Generally, N << |X| ® s
= Storing map from X to counts would defeat the purpose
) . . Particles: (3,3)
= P(x) approximated by (number of particles with value x) / N (2,3)
= More particles, more accuracy (3,3)
(3,2)
_ (3,3)
" Whatis P((2,2))?  0/10 = 0% (3,2)
(1,2)
(3,3)
= |n fact, many x may have P(x) = 0! (3,3)
(2,3)
Particles: Better lllustration
= QOur representation of P(X) is now a list of N particles (samples)
= Generally, N << |X]| P(x)
Distribution

Particles: (3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)
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Particle Filtering: Elapse Time

= Each particle is moved by sampling its next
position from the transition model
2’ = sample(P(X'|x))
Aka: sample(P(x;, | x;)

= This is like prior sampling — samples’ frequencies
reflect the transition probabilities

Particles:

= Here, most samples move clockwise, but some move in

another direction or stay in place

= This captures the passage of time

= |f enough samples, close to exact values before and
after (consistent)

33) e |® '\
(2,3) () ...\
(33)
(32) e
(33) L ®
(32)
(1,2)
(33)
(33)
(23)
Particles:
(32)
(23) e | Jo
(32) ® | o Io
(31)
(33) *o
(3.2) PN
(13)
(23)
(3.2) o

(2,2)

Particle Filtering: Observe

= Slightly trickier:
= Don’t sample observation, fix it

= Similar to likelihood weighting,
downweight samples based on the
evidence

w(x) = P(e|x)
B(X) x P(e|X)B'(X)
= As before, the probabilities don’t sum to
one, since all have been downweighted

(in fact they now sum to (N times) an
approximation of P(e))

Particles:

(3,2)

(2,3)

(3.2) el ol o
(3,1)

(3,3) *
(32) @ O ®
(1,3)

23) °
(3,2)

(2,2)

Particles:

(3,2) w=9

(2,3) w=.2

(3,2) w=.9 . ol
(3,1) w=.4

(3,3) w=.4 )
(3,2) w=.9 * 1%
(1,3) w=.1

(2,3) w=.2 L
(3,2) w=.9

(2,2) w=.4
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Particle Filtering Observe Part Il: Resample

= Rather than tracking weighted samples, we

resample

= N times, we choose from our weighted sample

distribution (i.e. draw with replacement)

= This is equivalent to renormalizing the

distribution

= Now the update is complete for this time step,
continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9 . °
(3,1) w=.4
(3,3) w=.4 )
(3,2) w=9 ° %
(1,3) w=.1
(2,3) w=.2 °
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2) e | |@
(2,3)
3,3 e
5312; ® ...‘
(1,3) Y
(2,3) >
(3,2)
(3,2)

Recap: Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Weight

Elapse

o |90 T—m—_ ) )

o |e% B °

(] Q@

<] ® ® |63

(]

Particles: Particles:

(3,3) (3,2)
(2,3) (2,3)
(3,3) (3,2)
(3,2) (3,1)
(3,3) (3,3)
(3,2) (3,2)
(1,2) (1,3)
(3,3) (2,3)
(3,3) (3,2)
(2,3) (2,2)

Resample
° ()
) @ @ @
o @ (O3]
) e | ¢%
@
® @
Particles: (New) Particles:
(3,2) w=.9 (3,2)
(2,3) w=.2 (2,2)
(3,2) w=.9 (3,2)
(3,1) w=.4 (2,3)
(3,3) w=4 (3,3)
(3,2) w=.9 (3,2)
(1,3) w=.1 (1,3)
(2,3) w=.2 (2,3)
(3,2) w=.9 (3,2)
(2,2) w=.4 (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]
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Video of Demo — Moderate Number of Particles

Video of Demo — One Particle
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Video of Demo — Huge Number of Particles

Robot Localization

= |n robot localization:

We know the map, but not the robot’s position
Observations may be vectors of range finder readings

State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

Particle filtering is a main technique

[P

N
7NN

DIRECTORY

i

]
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Particle Filter Localization (Sonar

[Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

[Video: global-floor.gif]
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Robot Mapping

= SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location
= State consists of position AND map!

= Main techniques: Kalman filtering (Gaussian HMMs)
and particle methods

DP-SLAM, Ron Parr

[Demo: PARTICLES-SLAM-mappingl-new.avi]

Particle Filter SLAM — Video 1

[Demo: PARTICLES-SLAM-mappingl-new.avi]
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Particle Filter SLAM — Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]
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