CSE 473: Artificial Intelligence

Particle Filters for HMMs

[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Example

- An HMM is defined by:
 - Initial distribution: $P(X_1)$
 - lacktriangleright Transitions: $P(X_t|X_{t-1})$
 - lacktriangle Emissions: P(E|X)

Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present

Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present
 - Current observation independent of all else given current state

Filtering (aka Monitoring)

- The task of tracking the agent's belief state, B(x), over time
 - B(x) is a distribution over world states repr agent knowledge
 - We start with B(X) in an initial setting, usually uniform
 - As time passes, or we get observations, we update B(X)
- Many algorithms for this:
 - Exact probabilistic inference
 - Particle filter approximation
 - Kalman filter (one method Real valued values)
 - invented in the 60'for Apollo Program real-valued state, Gaussian noise

Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Inference: Base Cases

"Observation"

$$P(x_1|e_1) = P(x_1, e_1)/P(e_1)$$

 $\propto_{X_1} P(x_1, e_1)$
 $= P(x_1)P(e_1|x_1)$

"Passage of Time"

$$P(X_2)$$

$$P(x_2) = \sum_{x_1} P(x_1, x_2)$$
$$= \sum_{x_1} P(x_1) P(x_2 | x_1)$$

Summary: Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

We update for evidence:

$$P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

The forward algorithm does both at once (and doesn't normalize)

The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1\cdot t})$$

We use the single (time-passage+observation) updates;

$$P(x_{t}|e_{1:t}) \propto_{X} P(x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_{t}|x_{t-1}) P(e_{t}|x_{t})$$

$$= P(e_{t}|x_{t}) \sum_{x_{t-1}} P(x_{t}|x_{t-1}) P(x_{t-1}, e_{1:t-1})$$

Video of Demo Pacman – Sonar (with beliefs)

Complexity of the Forward Algorithm?

We can normalize as we go if we

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

We use the single (time-passage+observation) undates:

$$P(x_t|e_{1:t}) \propto_X P(x_t,e_{1:t})$$
 want to have P(x|e) at each time step, or just once at the end...
$$= \sum_{x_{t-1}} P(x_{t-1},x_t,e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1},e_{1:t-1})P(x_t|x_{t-1})P(e_t|x_t)$$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1})P(x_{t-1},e_{1:t-1})$$

Complexity? O(|X|²) time & O(X) space

Particle Filtering

Particle Filtering Overview

- Approximation technique to solve filtering problem
- Represents P distribution with samples
- Still operates in two steps
 - Elapse time
 - Incorporate observations

52

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track *samples of X*, not all values
 - Samples are called *particles*
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the purpose

- Particles: (3,3) P(x) approximated by (number of particles with value x) / N
 - More particles, more accuracy

(2,3)

- (3,3)
 - (3,2)
 - (3,3)
 - (3,2)
 - (1,2)
 - (3,3)
 - (3,3)
 - (2,3)

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the purpose

- Particles: (3,3) P(x) approximated by (number of particles with value x) / N
 - More particles, more accuracy

(3,3)(3,2)

(2,3)

5/10 = 50% What is P((3,3))?

(3,3)(3,2)

- (1,2)
 - (3,3)
 - (3,3)
 - (2,3)

Representation: Particles Our representation of P(X) is now a list of N particles (samples) ■ Generally, N << |X| Storing map from X to counts would defeat the purpose Particles: (3,3) P(x) approximated by (number of particles with value x) / N (2,3)More particles, more accuracy (3,3)(3,2)(3,3)• What is P((2,2))? 0/10 = 0%(3,2)(1,2)(3,3)■ In fact, many x may have P(x) = 0!(3,3)(2,3)

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model
 - x' = sample(P(X'|x))Aka: $\text{sample}(P(X_{t+1} | X_t))$
 - This is like *prior sampling* samples' frequencies reflect the transition probabilities
 - Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier:
 - Don't sample observation, fix it
 - Similar to likelihood weighting, downweight samples based on the evidence

$$w(x) = P(e|x)$$
$$B(X) \propto P(e|X)B'(X)$$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particle Filtering Observe Part II: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Video of Demo – Moderate Number of Particles

Video of Demo – One Particle

Video of Demo – Huge Number of Particles

Robot Localization

- In robot localization:
 - We know the map, but not the robot's position
 - Observations may be vectors of range finder readings
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
 - Particle filtering is a main technique

DIRECTORY

Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

[Video: global-floor.gif]

