CSE 473: Artificial Intelligence

Markov Models - II

Daniel S. Weld --- University of Washington

[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Probability Recap

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

$$P(x,y) = P(x|y)P(y)$$

$$P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$$

$$= \prod_{i=1}^n P(X_i|X_1, ..., X_{i-1})$$

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

• X, Y independent if and only if: $\forall x, y : P(x,y) = P(x)P(y)$

• X and Y are conditionally independent given Z: $X \perp \!\!\! \perp Y | Z$

if and only if:

 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
- Need to introduce time (or space) into our models

Markov Models Recap

- lacktriangle Explicit assumption for all $\ t: \ X_t \perp \!\!\! \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$
- Consequence, joint distribution can be written as:

$$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$
$$= P(X_1)\prod_{t=2}^{T} P(X_t|X_{t-1})$$

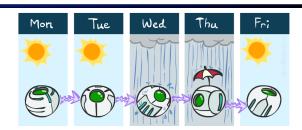
• Additional explicit assumption:

$$P(X_t \mid X_{t-1})$$
 is the same for all t

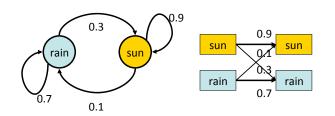
Example Markov Chain: Weather

- States: X = {rain, sun}
- Initial distribution: 1.0 sun

X _{t-1}	X _t	P(X _t X _{t-1})
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7



Two new ways of representing the same CPT



Mini-Forward Algorithm

Question: What's P(X) on some day t?

$$(X_1)$$
 (X_2) (X_3) (X_4) (X_4)

$$P(x_1) = known$$

$$\begin{split} P\big(x_t\big) &= \sum_{x_{t-1}} P(x_{t-1}, x_t) \\ &= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1}) \end{split}$$
 Forward simulation

Example Run of Mini-Forward Algorithm

• From initial observation of sun

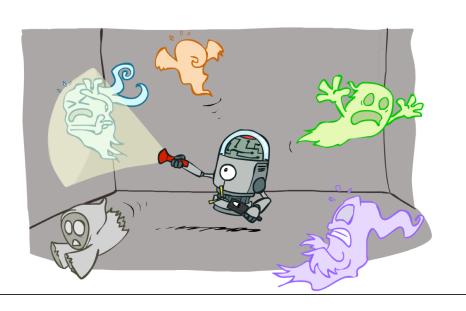
• From initial observation of rain

■ From yet another initial distribution P(X₁):

$$\left\langle \begin{array}{c} p \\ 1-p \end{array} \right\rangle \qquad \cdots \qquad \left\langle \begin{array}{c} 0.75 \\ 0.25 \end{array} \right\rangle$$

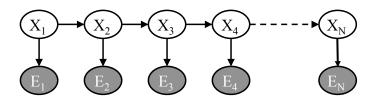
$$P(X_1) \qquad \qquad P(X_\infty) \qquad \qquad \text{[Demo: L13D1,2,3]}$$

Hidden Markov Models

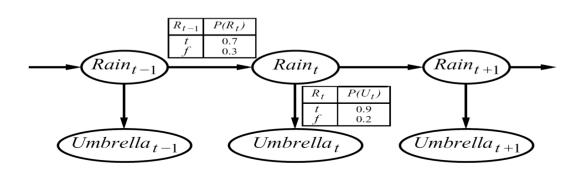


Hidden Markov Models

- Markov chains not so useful for most agents
 - Eventually you don't know anything anymore
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states S
 - You observe outputs (effects) at each time step
 - As a Bayes' net:

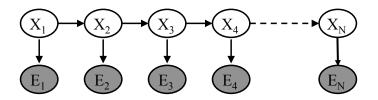


Example



- An HMM is defined by:
 - Initial distribution: $P(X_1)$
 - lacktriangleright Transitions: $P(X_t|X_{t-1})$
 - lacktriangle Emissions: P(E|X)

Hidden Markov Models



Defines a joint probability distribution:

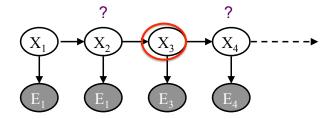
$$P(X_1, ..., X_n, E_1, ..., E_n) =$$

$$P(X_{1:n}, E_{1:n}) =$$

$$P(X_1)P(E_1|X_1) \prod_{t=2}^{N} P(X_t|X_{t-1})P(E_t|X_t)$$

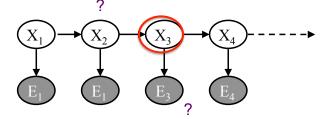
Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present



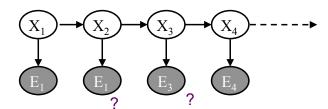
Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present
 - Current observation independent of all else given current state



Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present
 - Current observation independent of all else given current state



- Quiz: does this mean that observations are independent given no evidence?
 - [No, correlated by the hidden state]

HMM Computations

- Given
 - parameters
 - evidence $E_{1:n} = e_{1:n}$
- Inference problems include:
 - Filtering, find P(X_t|e_{1:t}) for all t
 - Smoothing, find $P(X_t|e_{1:n})$ for all t
 - Most probable explanation, find

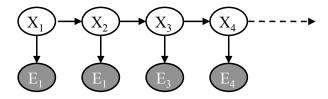
$$x^*_{1:n} = \operatorname{argmax}_{x_{1:n}} P(x_{1:n}|e_{1:n})$$

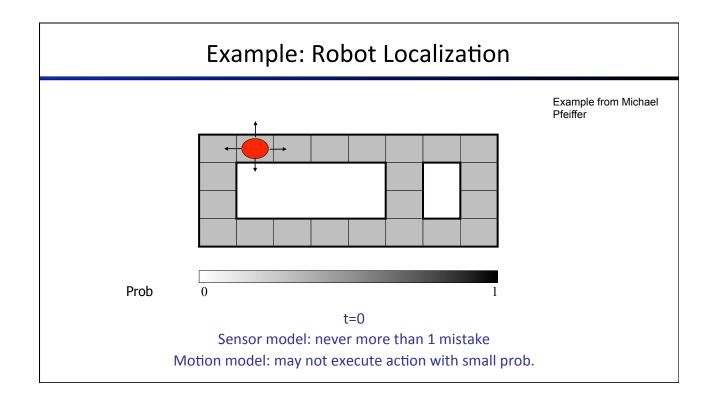
Filtering (aka Monitoring)

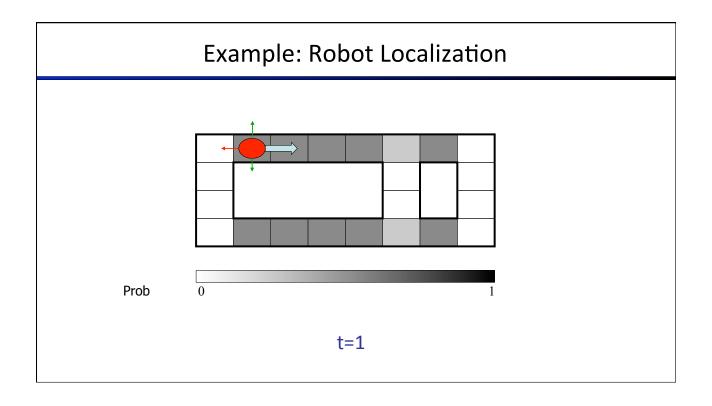
- The task of tracking the agent's belief state, B(x), over time
 - B(x) is a distribution over world states repr agent knowledge
 - We start with B(X) in an initial setting, usually uniform
 - As time passes, or we get observations, we update B(X)
- Many algorithms for this:
 - Exact probabilistic inference
 - Particle filter approximation
 - Kalman filter (one method Real valued values)
 - invented in the 60'for Apollo Program real-valued state, Gaussian noise

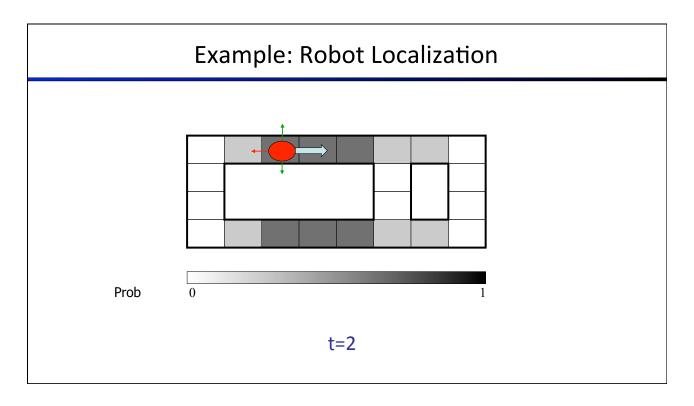
HMM Examples

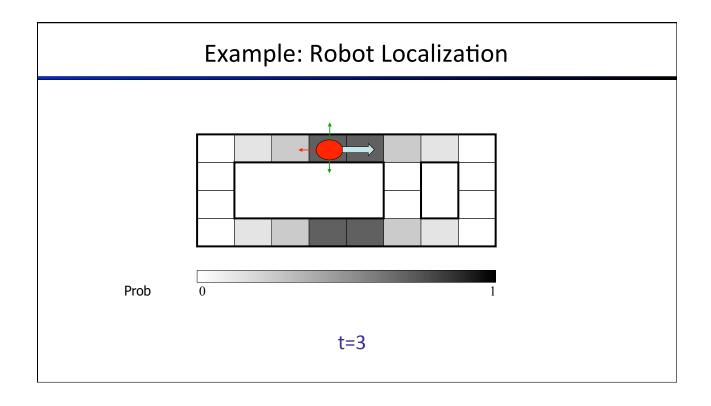
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

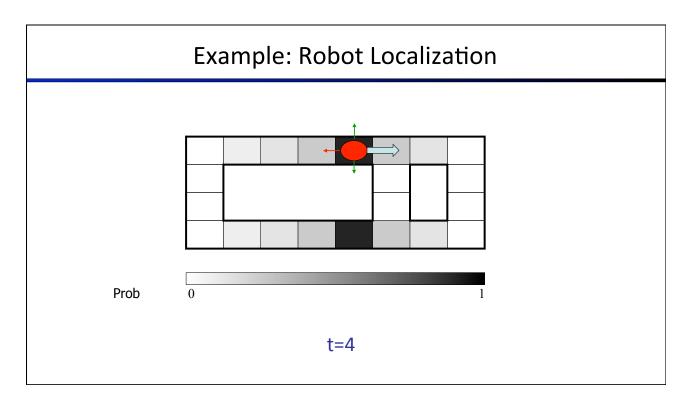


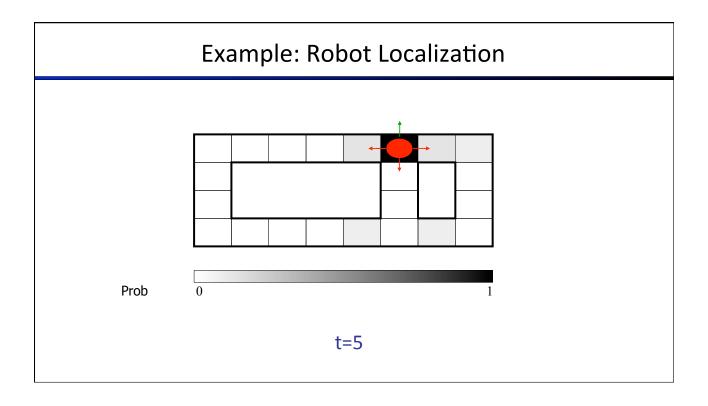






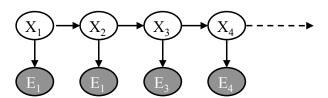






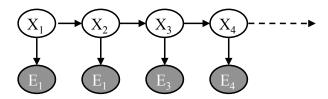
Other Real HMM Examples

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)



Other Real HMM Examples

- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options



Inference: Base Cases

"Observation"

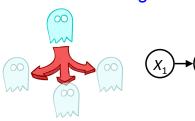
 $P(X_1|e_1)$

$$P(x_1|e_1) = P(x_1, e_1)/P(e_1)$$

$$\propto_{X_1} P(x_1, e_1)$$

$$= P(x_1)P(e_1|x_1)$$

"Passage of Time"



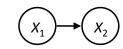
$$P(X_2)$$

$$P(x_2) = \sum_{x_1} P(x_1, x_2)$$
$$= \sum_{x_1} P(x_1) P(x_2 | x_1)$$

Passage of Time

Assume we have current belief P(X | evidence to date)

$$B(X_t) = P(X_t|e_{1:t})$$



• Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

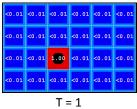
Or compactly:

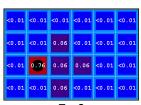
$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t)B(x_t)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

As time passes, uncertainty "accumulates"





(Transition model: ghosts usually go clockwise)



Observation

Assume we have current belief P(X | previous evidence):

$$B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$$

• Then, after evidence comes in:

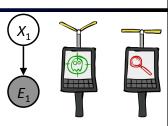
$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t})/P(e_{t+1}|e_{1:t})$$

$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

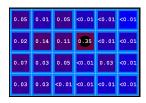
$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$



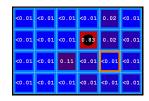
- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

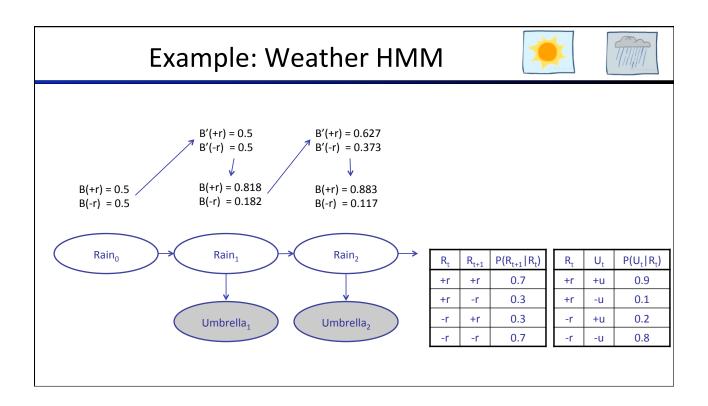


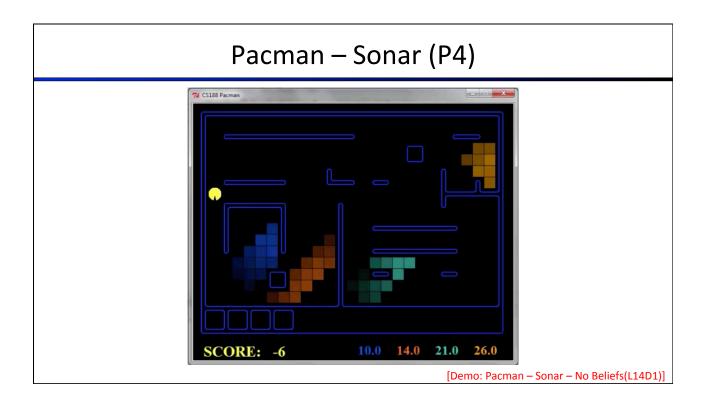
Before observation



After observation

 $B(X) \propto P(e|X)B'(X)$



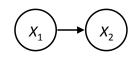


Video of Demo Pacman – Sonar (with beliefs)

Summary: Online Belief Updates

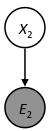
- Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$



• We update for evidence:

$$P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$



• The forward algorithm does both at once (and doesn't normalize)

The Forward Algorithm

We can normalize as we go if we

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

We use the single (time-passage+observation) updates;

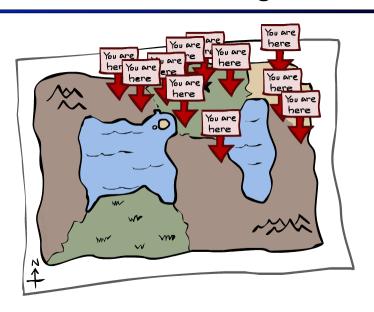
$$P(x_t|e_{1:t}) \propto_X P(x_t,e_{1:t})$$
 want to have P(x|e) at each time step, or just once at the end...
$$= \sum_{x_{t-1}} P(x_{t-1},x_t,e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1},e_{1:t-1})P(x_t|x_{t-1})P(e_t|x_t)$$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1})P(x_{t-1},e_{1:t-1})$$

■ Complexity? O(|X|²) time & O(X) space

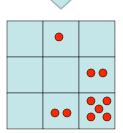
Particle Filtering



Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5



Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1

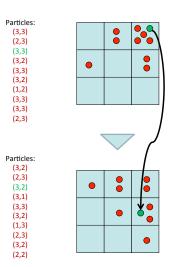
Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)



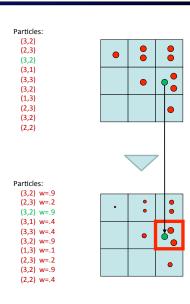
Particle Filtering: Observe

- Slightly trickier:
 - Don't sample observation, fix it
 - Similar to likelihood weighting, downweight samples based on the evidence

$$w(x) = P(e|x)$$

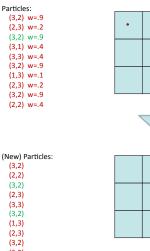
$$B(X) \propto P(e|X)B'(X)$$

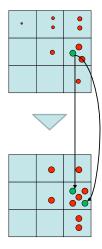
 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))



Particle Filtering: Resample

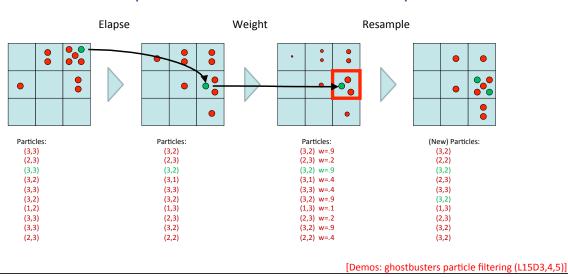
- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one





Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution



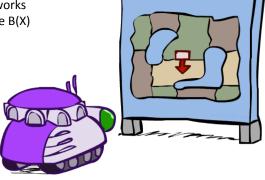
Video of Demo – Moderate Number of Particles

Video of Demo – One Particle

Video of Demo – Huge Number of Particles

Robot Localization

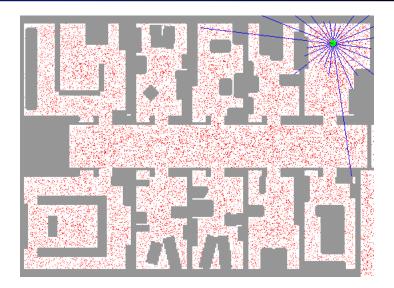
- In robot localization:
 - We know the map, but not the robot's position
 - Observations may be vectors of range finder readings
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
 - Particle filtering is a main technique



DIRECTORY

Particle Filter Localization (Sonar)

Particle Filter Localization (Laser)



[Video: global-floor.gif]

