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Probability Recap

Conditional probability P(zly) = P(z,y)
P(y)
* Product rule P(z,y) = P(z|y)P(y)
* Chainrule P(X1,X2,...Xn) = P(X1)P(Xo|X1)P(X3/X1,X2)...
= |] P(Xil X1, Xi-1)
i=1
P(y|z)
= Bayesrule P = P
(aly) = 5 5 P@

= X, Yindependentif and only if: Vz,y: P(z,y) = P(x)P(y)

= X and Y are conditionally independent givenz: X 1LY |Z
if and only if: Va,y,z : P(xz,y|z) = P(x|z)P(y|z)




Reasoning over Time or Space

= Often, we want to reason about a sequence of observations
= Speech recognition
= Robot localization
= User attention

= Medical monitoring

= Need to introduce time (or space) into our models

Markov Models Recap

= Explicit assumption forall t: X; 1L Xi,..., Xy o | X¢
= Consequence, joint distribution can be written as:
P(X1, Xo,...,X1) = P(X1)P(X2|X1)P(X3|X2) ... P(X7|X7_1)

= P(Xy) [ [ P(X:|X-1)

t=2
= Additional explicit assumption:

e
P(Xt | Xt—l) is the same for all t % s




Example Markov Chain: Weather

= States: X = {rain, sun}

® |nitial distribution: 1.0 sun

= CPTP(X; | X.q):

Xt-l xt P(thxt-l)
sun | sun 0.9
sun | rain 0.1
rain | sun 0.3
rain | rain 0.7

Mini-Forward Algorithm

= Question: What’s P(X) on some day t?

Q-+

P(x1) = known

P(:Ut) = Z P(xi—1,2¢)

Tt—1

— Z P(xy | x4—1)P(x4—1)

Tt—1

Forward simulation




Example Run of Mini-Forward Algorithm

®* From initial observation of sun
1.0 0.9 0.84 0.804 I 0.75
< 0.0 > < 0.1 > < 0.16 > < 0.196 > < 0.25 >
P(X)) P(X,) P(X;) P(X,) P(X.)
®* From initial observation of rain
0.0 0.3 0.48 0.588 0.75
< 1.0 > < 0.7 > < 0.52 > < 0.412 >~< 0.25 > Wy
P(X)) P(X,) P(X;) P(X,) P(X..) .
* From yet another initial distribution P(X,):
p 0.75
<1—p> ~<o.25>

P(X)) P(X.) [Demo: L13D1,2,3]

Hidden Markov Models




Hidden Markov Models

= Markov chains not so useful for most agents
= Eventually you don’t know anything anymore
= Need observations to update your beliefs

= Hidden Markov models (HMMs)
= Underlying Markov chain over states S
= You observe outputs (effects) at each time step
= As a Bayes’ net:

Example
R, | PR,
14 0.7
A 0.3

= An HMM is defined by:
® |nitial distribution: P(X1q)
= Transitions: P(X¢| Xe—1)
= Emissions: P(FE|X)




Hidden Markov Models

= Defines a joint probability distribution:
P(Xl,.- . ,Xn,El,- -.,En) =
P(Xl:'ru El:'n) -

Ar
P(X1)P(E1|X1) | [ P(Xe| X 1) P(E:| X0)
t=2

Conditional Independence

= HMMs have two important independence properties:
= Markov hidden process, future depends on past via the present

?




Conditional Independence

= HMMs have two important independence properties:
= Markov hidden process, future depends on past via the present
= Current observation independent of all else given current state

Conditional Independence

= HMMs have two important independence properties:
= Markov hidden process, future depends on past via the present
= Current observation independent of all else given current state

= Quiz: does this mean that observations are independent given no evidence?
= [No, correlated by the hidden state]




HMM Computations

= Given
" parameters
= evidence E,.,=¢,.,

= Inference problems include:
» Filtering, find P(XjJe,.,) for all t
= Smoothing, find P(XjJe,.,) for all t
= Most probable explanation, find
X*1., = argmax,, P(Xye;.)

Filtering (aka Monitoring)

= The task of tracking the agent’s belief state, B(x), over time
= B(x) is a distribution over world states — repr agent knowledge
= We start with B(X) in an initial setting, usually uniform
= As time passes, or we get observations, we update B(X)

= Many algorithms for this:
= Exact probabilistic inference
= Particle filter approximation
= Kalman filter (one method — Real valued values)

= invented in the 60’for Apollo Program — real-valued state, Gaussian noise




HMM Examples

= Robot tracking:
= QObservations are range readings (continuous)
= States are positions on a map (continuous)

Example: Robot Localization

l TS
Prob 0 1

t=0
Sensor model: never more than 1 mistake
Motion model: may not execute action with small prob.

Example from Michael
Pfeiffer




Example: Robot Localization

Prob 0 1

Example: Robot Localization

Prob 0 1

t=2
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Example: Robot Localization

Prob 0 1

t=3

Example: Robot Localization

Prob 0 1
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Example: Robot Localization

Prob 0 1

t=5

Other Real HMM Examples

= Speech recognition HMMs:
= QObservations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)
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Other Real HMM Examples

= Machine translation HMMs:
= QObservations are words (tens of thousands)
= States are translation options

Inference: Base Cases

“Observation” “‘Passage of Time”

A ©-®

P(X1|€1) P(XQ)
P(z1le1) = P(x1,e1)/P(e1) P(z) =Y P(z1,z7)
1
ocx; P(z1,e1) = P(x1)P(aoler)

= P(z1)P(e1l|r1)
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Passage of Time

= Assume we have current belief P(X | evidence to date)

B(X:) = P(X¢le1:)

= Then, after one time step passes:

P(Xiqilers) = P(Xpq1,iler)

Tt
= ZP(Xt+1|xt,61;t)P(mt\61;t) = Or compactly:

— B'(Xi1) =Y P(X'|z)B(z
= ZP(Xt+1|:L‘t)P(It 61:15) ( t+1) mzt ( ‘mt) (1‘1‘)

* Basic idea: beliefs get “pushed” through the transitions
= With the “B” notation, we have to be careful about what time step t the belief is about, and what

evidence it includes

Example: Passage of Time

(Transition model: ghosts usually go clockwise)

ﬂ
ﬂ

= As time passes, uncertainty “accumulates”

<0.01/[<0.01f<0.01}{<0.01{<0.01/{<0.01 <0.01/[<0.01/<0.01 <0.01<0.01

H )

01{<0.01

:
[

T=5

<0.01]| <!
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Observation

= Assume we have current belief P(X | previous evidence): i
B'(Xt41) = P(Xesaler)
= Then, after evidence comes in:
P(Xiyileriy1) = P(Xtyr,eirilens)/Pletyilert)
XX41 P(Xt+1, €t+1|€1:t)

= P(€t+1|€1:t, Xt+1)P(Xt+1|€1:t)
= P(est11|Xep1) P(Xig1ler)

= Basic idea: beliefs “reweighted”
= Or, compactly: by likelihood of evidence

B(Xi11) xx,4, Plery11Xe41)B' (Xe41) * Unlike passage of time, we have
to renormalize

Example: Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases”

ﬂ

M

Before observation After observation

B(X) « P(e|X)B'(X)
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Example: Weather HMM

o | [

B’(+r)=0.5

B'(-r) =0.5
B(+r) =0.5 B(+r) =0.818
B(-r) =0.5 B(-r) =0.182

Umbrella, Umbrella,

B’(+r) =0.627
B’(-r) =0.373

|

B(+r) =0.883
B(-r) =0.117

Rain,

Rt Rt+1 P(Rt+1 I Rt) Rt Ut P(Ut | Rt)
+r +r 0.7 +r | +u 0.9
+r -r 0.3 +r -u 0.1
-r +r 0.3 -r +u 0.2
-r -r 0.7 -r -u 0.8

Pacman — Sonar (P4)

r’?l CS188 P.

aaaaa

14.0

i

21.0 26.0

[Demo: Pacman — Sonar — No Beliefs(L14D1)]
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Video of Demo Pacman — Sonar (with beliefs)

Summary: Online Belief Updates

Every time step, we start with current P(X | evidence)
We update for time:

P(xzileri—1) = Y P(zi_1ler:i—1) - P(wi|lzi—1) @_’@

Tt—1

We update for evidence:
P(ztler:) oxx P(xtler:i—1) - Plet|wt)

The forward algorithm does both at once (and doesn’ t normalize)
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The Forward Algorithm

= We are given evidence at each time and want to know

Bi(X) = P(X¢le1:)

= We use the single (time-passage+observation) updates:
We can normalize as we go if we

) ) want to have P(x|e) at each time
P(xtlel-t) XX P(at,e1:) \ step, or just once at the end...

= Z P(mt—laxtvellt)

T—1

= > P(xi_1,e1:4—1)P(xt|wi—1) P(et|zt)

i1

= P(eglzt) Y P(atlei—1)P(ap—_1,e14-1)
Ty

= Complexity?  O(|X|?) time & O(X) space

Particle Filtering
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Particle Filtering

= Filtering: approximate solution
00 | 01 | 00
= Sometimes |X]| is too big to use exact inference
= |X| may be too big to even store B(X) 00 | 00 | 0.2
= E.g. Xis continuous
= Solution: approximate inference 0.0 1 02105
= Track samples of X, not all values
= Samples are called particles
= Time per step is linear in the number of samples
= But: number needed may be large ®
= |n memory: list of particles, not states
= This is how robot localization works in practice ee
= Particle is just new name for sample %°®
ee
(O}
Representation: Particles
= Qur representation of P(X) is now a list of N particles (samples) o [0
= Generally, N << |X| °© °°
(]
= Storing map from X to counts would defeat the point )

= P(x) approximated by number of particles with value x
= So, many x may have P(x) = 0!
= More particles, more accuracy

= For now, all particles have a weight of 1

Particles:
(3.3)
(23)
(3.3)
(3.2)
(3.3)
(3.2)
(1,2)
(3.3)
(33)
(23)
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Particle Filtering: Elapse Time

= Each particle is moved by sampling its next particles: -
position from the transition model o) s .0:\
(33)
/ ’ (32) A )
' = sample(P(X'|z)) 3) ®
(L2)
S . . , . (33)
= This is like prior sampling — samples’ frequencies (3,3)
reflect the transition probabilities (23)
= Here, most samples move clockwise, but some move in
another direction or stay in place Pa(r:'czl)es:
23) ® ®
(3,2) ® | o Io
. . (3.1)
= This captures the passage of time (3:3) o *.
= |f enough samples, close to exact values before and 8;; L
after (consistent) gg; ®
22)
Particles:
= Slightly trickier: o) o o
) - (32) ®| o o
= Don’t sample observation, fix it (3,1)
(33) o |o®
= Similar to likelihood weighting, downweight g;; S
samples based on the evidence 2,3) P
(3.2)
22)
w(z) = P(e|x)
/
B(X) x P(elX)B (X) Particles:
(3,2) w=9
(2,3) w=.2 . ° )
(3,2) w=.9 ° )
= As before, the probabilities don’t sum to one, (;3131 Wf-i p
since all have been downweighted (in fact they :3:2; o ° 1%
now sum to (N times) an approximation of P(e)) g;; w;
,3) w=.
(3.2) w=.9 L
(2,2) w=.4
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Particle Filtering: Resample

= Rather than tracking weighted samples, we Parices:
,2) W=, °
resample (2.3) w=2 S O
(3,2) w=.9

(3,1) w=.4 ®
. . (3,3) w=.4 ® .‘

= N times, we choose from our weighted sample (2w
distribution (i.e. draw with replacement) (23) w2 °

,2) w=.

(2,2) w=.4

= This is equivalent to renormalizing the

distribution
(New) Particles:
(3.2)
2.2) @ @
* Now the update is complete for this time step, o deo
continue with the next one Esa} ° | %
3,2
(1.3) ®
23) et
(3,2)
(3,2)

Recap: Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
o |90 T—m—_ ) ) ° °
o |e% e ® o | o e o
() () o @ (D)
e e ® % ) e | ¢%
o . °
Particles: Particles: Particles: (New) Particles:
(33) (3,2) (3,2) w=9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=9 (3,2)
(3,2) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=.4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=9 (3,2)
(2,3) (2,2) (2,2) w=.4 (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]
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Video of Demo — Moderate Number of Particles

Video of Demo — One Particle

22



Video of Demo — Huge Number of Particles

Robot Localization

= |n robot localization:

We know the map, but not the robot’s position
Observations may be vectors of range finder readings

State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

Particle filtering is a main technique

[P

N
7NN

DIRECTORY

i

]

i




Particle Filter Localization (Sonar

[Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

[Video: global-floor.gif]
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Robot Mapping

= SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location
= State consists of position AND map!

= Main techniques: Kalman filtering (Gaussian HMMs)
and particle methods

DP-SLAM, Ron Parr

[Demo: PARTICLES-SLAM-mappingl-new.avi]

Particle Filter SLAM — Video 1

[Demo: PARTICLES-SLAM-mappingl-new.avi]
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Particle Filter SLAM — Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]
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