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Announcements

= No class on Wed...

Terminology

Don’t be Fooled

— M = |t may look cute...

Marginal Probability

Yi Mg 75
PX = @) =

Conditional Probability

Joint Probability
PX =2, Y = ;) = POY =yl X = @) =
L)( value is given
Don’t be Fooled The Sword of Conditional Independence!
" Itgets big.. Slay | am a BIG joint
the distribution!
Basilisk!

Means: Vz,y,z : P(z,y|z) = P(z|z)P(y|z) P

X1Y|Z

Or, equivalently: Vaz,y,z : P(z|z,y) = P(z|z)




Probability Recap

Reasoning over Time or Space

= Conditional probability P(aly) = Pf(’?g)
Y
P(z,y) = P(zly) P(y)

= Product rule

= Chainrule P(X1,Xo.,... Xn) = P(X1)P(Xa|X1)P(X3/X1,X0)...
= H P(X;|X1,....2 Xi 1)
= Bayes rule P(aly) = PIEZ\;)P( )

= X, Yindependentif and only if: Va,y: P(z,y) = P(z)P(y)

= X and Y are conditionally independent givenz: X 1LY |Z

if and only if: Va,y,z 1 P(x,ylz) = P(z[2)P(y|2)

= Often, we want to reason about a sequence of observations
= Speech recognition
= Robot localization
= User attention

= Medical monitoring

= Need to introduce time (or space) into our models

Markov Models Recap

= Explicit assumption forall t: X; A Xi,..., Xy o | X¢1

= Consequence, joint distribution can be written as:

P(X1,Xo,...,X7) = (Xl)P(Xg\X1 (X3|X2) ... P(Xp|X1-1)

XI)HP(X,\Xf 1
t=2

= Additional explicit assumption:

- -
S
is the same for all t %

P(Xy | Xi-1)

6 &
b3

Example Markov Chain: Weather

---

O3 6.0

‘ Two new ways of representing the same CPT ‘

0.9
0.9
' [ran = ran |
4.7 o 0.7

= States: X = {rain, sun}

= |nitial distribution: 1.0 sun

= CPTP(X, | Xi4):

Xea | %o | PO %)
sun|sun| 09

sun [rain| 0.1

rain | sun 0.3

rain | rain | 0.7

Example Markov Chain: Weather

Mini-Forward Algorithm

= |nitial distribution: 1.0 sun

0.7

= What is the probability distribution after one step?
P(Xp =sun) = +
P(X5 = sun|X; = rain)P(X1 = rain)

+0.3-0.0=0.9

= Question: What's P(X) on some day t?

@@ @~

P(xz1) = known

-

P(xy) = ZP(T/—M‘TL)
*Z (24 | @1—1)P(x4-1)

-Forward simulation




Example Run of Mini-Forward Algorithm Video of Demo Ghostbusters Basic Dynamics

= From initial observation of sun

(a0) (51) {o16) (aiss )mmb{s22)

P(X) P(X;) P(X;) P(X) P(X,)
= From initial observation of rain
<1.o> <o.7> <o.52> <0412>-< 0.25>
P(X) P(X;) P(X3) P(X) P(X.)
= From yet another initial distribution P(X,):

1-p - =_ < 0.25 >
P()(]) P(X“) [Demo: L13D1,2,3]]
Video of Demo Ghostbusters Circular Dynamics Video of Demo Ghostbusters Whirlpool Dynamics
Stationary Distributions Example: Stationary Distributions
= For most chains: = Stationary distribution: * Question: What's P(X) at time t = infinity? j"
= Influence of the initial distribution = The distribution we end up with is called ‘—m - [Te * b=
gets less and less over time. the stationary distribution P, of the Q @ @ ® “ @ |
* The distribution we end up in is chain Puo(sun) = P(sun|sun) Po (sun) + P(sun|rain) Pa (rain)
independent of the initial distribution = It satisfies Poo(rain) = P(rain|sun) Ps(sun) + P(rain|rain) Px(rain)
Po(X) = Pooy1(X) = Z P(X|z) Poo () P (sm) = 0.9Pas(sun) + 0.8Pac(rain) TRESLTT
Po(rain) = 0.1Px(sun) + 0.7Px (rain) sun [sn |09
P (sun) = 3P (rain) sun | rain 0.1
174 rain | sun | 03
Pao(rain) = 1/3Fe(sun) : Py (sun) = 3/4 rain [ rain| 0.7
Also: P (sun) + Px(rain) =1 Py (rain) = 1/4




Application of Stationary Distribution: Web Link Analysis

Hidden Markov Models

= PageRank over a web graph
» Each web page is a state
« Initial distribution: uniform over pages
= Transitions:
= With prob. c, uniform jump to a
random page (dotted lines, not all shown)
= With prob. 1-c, follow a random
outlink (solid lines)

= Stationary distribution

* Will spend more time on highly reachable pages

* E.g. many ways to get to the Acrobat Reader download page

» Somewhat robust to link spam

* Google 1.0 returned the set of pages containing all your
keywords in decreasing rank, now all search engines use link
analysis along with many other factors (rank actually getting
less important over time)

= Markov chains not so useful for most agents
= Eventually you don’t know anything anymore
= Need observations to update your beliefs

= Hidden Markov models (HMMs)
* Underlying Markov chain over states S
* You observe outputs (effects) at each time step
= Asa Bayes’ net:

Example

Hidden Markov Models

= An HMM is defined by:

= Initial distribution: P(X1)
= Transitions: P(X¢| Xe—1)
= Emissions: P(E|X)

PoPP P
® & ® ®

= Defines a joint probability distribution:

P(X1,-»Xny E1, ..., EBy) =
P(Xin, E1:n) =
N
P(X1)P(E1X1) [ [ P(Xe| X)) P(Eu| X2)
t=2

Ghostbusters HMM

HMM Computations

P(X,) = uniform

P(X’|X) = ghosts usually move clockwise,

but sometimes move in a random direction or stay put
P(E|X) = same sensor model as before:
red means close, green means far away.

P(X'|X=<1,2>)
P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
PEX) 0.05 0.15 05 0.3

Etc... (must specify for other distances)

= Given
= parameters
= evidence E, =¢,.,

= Inference problems include:
= Filtering, find P(X{e,.) for all t
= Smoothing, find P(X{e,.,) for all t
= Most probable explanation, find
X* 1y = argmaxs,, PO ler)




Real HMM Examples

Real HMM Examples

= Speech recognition HMMs:
= Observations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

= Machine translation HMMs:
= Observations are words (tens of thousands)
= States are translation options

E- @G-

E, E, E,

Real HMM Examples

Conditional Independence

= Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)

G-

E, E, E,

= HMMs have two important independence properties:
= Markov hidden process, future depends on past via the present

Conditional Independence

Conditional Independence

= HMMs have two important independence properties:
= Markov hidden process, future depends on past via the present
= Current observation independent of all else given current state
?

= HMMs have two important independence properties:
= Markov hidden process, future depends on past via the present
= Current observation independent of all else given current state

@G-

E, E, E,
2 ?

= Quiz: does this mean that observations are independent given no evidence?

® [No, correlated by the hidden state]




Filtering / Monitoring

Example: Robot Localization

Filtering, or monitoring, is the task of tracking the distribution B(X) (the belief state)
over time

We start with B(X) in an initial setting, usually uniform

As time passes, or we get observations, we update B(X)

The Kalman filter (one method — Real valued values)
= invented in the 60’s as a method of trajectory estimation for the Apollo program

B

Prob 0 1
t=0
Sensor model: never more than 1 mistake
Motion model: may not execute action with small prob.

Example from Michael
Pleiffer

Example: Robot Localization

Example: Robot Localization

Prob 0 1

Prob 0 1

Example: Robot Localization

Example: Robot Localization

Prob 0 1

t=3

Prob 0 1

t=4




Example: Robot Localization

Inference Recap: Simple Cases

Prob 0 1

P(X1le1) P(X2)

P(x1ler) = P(x1,e1)/P(e1)
xx, P(x1,e1)

= P(xz1)P(er|x1)

P(w2) = 32 P, 22)
=3 P(e1) Pasler)
En

Online Belief Updates

Passage of Time

Every time step, we start with current P(X | evidence)
We update for time:

P(xilery—1) = Y P(wy_1le1y—1) - P(welwi—1)

Te—1

We update for evidence:

P(xgler:y) ocx Pailer—1) - Pletar)

The forward algorithm does both at once (and doesn’t normalize)
Problem: space is |X| and time is |X|? per time step

Assume we have current belief P(X | evidence to date)
B(Xy) = P(X¢le1:t)

Then, after one time step passes:

O,

P(Xp1ler) = D P(Xqpalz) P(aeler)
T

Or, compactly:

B(X") =3 P(X'|x)B(x)

Basic idea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and
what evidence it includes

Example: Passage of Time

Observation

= As time passes, uncertainty “accumulates”

B/(X") =3 P(X'|z)B(x)

Transition model: ghosts usually go clockwise

Assume we have current belief P(X | previous evidence):

B'(X41) = P(Xyyaler:)

Then:

P(Xip1leri41) o< Plepyn| Xoqp1) P(Xppaler:)

B(X41) o P(e|X)B' (X4 1)

Basic idea: beliefs reweighted by likelihood of evidence

Unlike passage of time, we have to renormalize




Example: Observation

The Forward Algorithm

= As we get observations, beliefs get reweighted, uncertainty
“decreases”

Before observation After observation

B(X) x P(¢|/X)B'(X)

= We want to know: Bi(X) = P(X¢le1:)
= We can derive the following updates

P(wiler:) ocx P(ae, e1:)

= > P(zt—1,2t,€1:1)

xi_1

= > P(xy1.e14- 1) P(xi|zi—1) Pet]xy)
L1

= P(etlz) D> P(wgloe—1)P(xp1,e1:4-1)

Tp—1

= To get By (X)) compute each entry and normalize

Example: Run the Filter Example HMM
0.500 0.627
(Rain, Ty 0.500 0.373
True 0.500 /o,s’m odss
False 0.500 0.182 0.117

= An HMM is defined by:

= Initial distribution: P(X1)
= Transitions: P(X¢| Xe—1)
= Emissions: P(E|X)

Example Pac-man

Summary: Filtering

SCORE: 0

Filtering is the inference process of finding a distribution over X; given e, through e; :
P(Xr | egy)

* Wefirst compute P(X, | ey): Pziler) o P(a1) - Plei|ar)

Foreachtfrom 2to T, we have P( X, | e}.;)
Elapse time: compute P(X, | e, )

P(xelert—1) = Z P(xi—1ler—1) - P(x|loi—1)

Ob . T
Serve: compute P(X, | €1,7, &) = P X, | €5,)

P(xiler) o< Plaxiler—1) - Peday)




Recap: Reasoning Over Time

Recap: Filtering

= Stationary Markov models

Elapse time: compute P(X, | e,..,)

G G o P(x¢leri—1) = P(zi—ler—1) - P(a|lri—1)
GoO—o—— - ;Lz,:]
P(X1) P(X|X_1) o Observe: compute P(X, | e,.)
E1X0 P(xilers) o< P(alei—1) - Pleday)
= Hidden Markov models X E P Belief: <P(rain), P(sun)>
rain umbrella 0.9 @ ‘ P(X1) <0.5,0.5> Prior on X,
rain no umbrella 0.1 t' P(X, | By = umbrella) ~ <0.82,0.18> Observe
sun umbrella 0.2 @ P(Xs | E, = umbrella) <0.63, 0.37> Elapse time
sun no umbrella 0.8 P(X2 | B, umb, Fo wmb) <0.88, 0.12> Observe
Particle Filtering Representation: Particles
= Sometimes |X| is too big to use exact inference 0.0 01 0.0 = Our representation of P(X) is now a list of N particles @
= |XI may be too big to even store B(X) (samples)
* E.g. Xis continuous « Generally, N << [X| o0

= |X|2 may be too big to do updates

0.0 0.0 0.2

= Storing map from X to counts would defeat the point

= Solution: approximate inference 0.0 0.2 05 oY)
= Track samples of X, not all values = P(x) approximated by number of particles with value
= Samples are called particles x
= Time per step is linear in the number of samples = S0, many xwill have P(x) = 0! Partces
= But: number needed may be large @ * More particles, more accuracy (2.3)
* In memory: list of particles, not states 82:
L L . . = For now, all particles have a weight of 1 (3.3)
= This is how robot localization works in practice OO gf:
@3)
e (33)
1)
Particle Filtering: Elapse Time Particle Filtering: Observe
= Each particle is moved by sampling its next position from = Slightly trickier: .\
the transition model = Don’t do rejection sampling (why not?)
o?\ * We don’t sample the observation, we fix it ollee
= sample(P(X’'|x)) = This is similar to likelihood sowe ight our
samples based on the evidence
- ) ! ) —— ;. b ) ee
= This is like prior sampling — samples’ frequencies reflect the
transition probs w(x) = P(e|a)
= Here, most samples move clockwise, but some move in another
direction or stay in place * B(X) x P(e ‘_\»)“/(_\—) A
I . = Note that, as before, the probabilities don’t sum to one, since
This captures the passage of time o .L most have been downweighted (in fact they sum to an ° .o
= If we have enough samples, close to the exact values before approximation of P(e))
and after (consistent) 5
e |0 0| @@ e |lg©| e




Particle Filtering: Resample

Recap: Particle Filtering

Old Particles:
= Rather than tracking weighted .3) w
samples, we resample (21)w=0.9 -
(2,1) w=0.9
(3.1)w=0.4
= N times, we choose from our (32) w=0.3 @ ° o
weighted sample distribution (22)w=0.4
(i.e. draw with replacement) (11)w=04
(3,1) w=0.4
(2,1) w=0.9
= This is equivalent to (32)w=0.3

renormalizing the distribution

New Particles:

= Now the update is complete for @1
this time step, continue with the (2.1)
next one (32)
(22) @ [}

At each time step t, we have a set of N particles / samples
=Initialization: Sample from prior, reweight and resample
=Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next state

2/ = sample(P(X'|x))

2. Reweight: for each particle, compute its weight given the actual observation ¢

« Resamplew () = P (e|x)hts, and sample N new particles from the resulting
distribution over states

Particle Filtering Summary

Robot Localization

= Represent current belief P(X | evidence to date) as set of n samples (actual
assignments X=x)
= For each new observation e:
1. Sample transition, once for each current particle x
x’ = sample(P(X’|z))
2. For each new sample x’, compute importance weights for the new
evidence e:

w(z") = P(e|z’)

3. Finally, normalize the importance weights and resample N new particles

= Inrobot localization:
= We know the map, but not the robot’s position
= Observations may be vectors of range finder readings
= State space and readings are typically continuous (works basically like a very fine grid) and so we
cannot store B(X)
= Particle filtering is a main technique

Robot Localization

Which Algorithm?

QuickTimer a2
are nesded o e this picture.

Exact filter, uniform initial beliefs

10



Which Algorithm?

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles

Particle filter, uniform initial beliefs, 25 particles

P4: Ghostbusters

Dynamic Bayes Nets (DBNs)

Noisy distance prob
= Plot: Pacman's grandfather, Grandpac, learned to hunt True distance = 8

ghosts for sport.

= He was blinded by his power, but could hear the ghosts’
banging and clanging.

= Transition Model: All ghosts move randomly, but are
sometimes biased

= Emission Model: Pacman knows a “noisy” distance to
each ghost

We want to track multiple variables over time, using multiple sources of evidence
Idea: Repeat a fixed Bayes net structure at each time

Variables from time t can condition on those from t-1

= Disc cBa

Exact Inference in DBNs

DBN Particle Filters

Variable elimination applies to dynamic Bayes nets

Procedure: “unroll” the network for T time steps, then eliminate variables until P(X;|

e,,;) is computed

t=1 t=2 t=3

@ )f:/\;f\_ §
|
OI=%e

Online betrefupdates—Etiminateattvariabtes from the previous timeste|
for current time only

; store factors

A particle is a complete sample for a time step
Initialize: Generate prior samples for the t=1 Bayes net
= Example particle: G,2=(3,3) G,*=(5,3)

Elapse time: Sample a successor for each particle

= Example successor: G,2=(2,3) G,° = (6,3)
Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample

= Likelihood: P(E,? |G2) * P(E® |G,P)

Resample: Select prior samples (tuples of values) in proportion to their likelihood

11



SLAM

Best Explanation Queries

= SLAM = Simultaneous Localization And Mapping
= We do not know the map or our location
= Our belief state is over maps and positions!
= Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

= [DEMOS] g

DP-SLAM, Ron Parr

PG>

= Query: most likely seq:

arg max P(x1:¢le1:4)
1

State Path Trellis

Viterbi Algorithm

= State trellis: graph of states and transitions over time

= Each arc represents some transition Ty — Tt
= Each arc has weight P(xi|xi—1) P(et|xr)

= Each path is a sequence of states

= The product of weights on a path is the seq’s probability

= Can think of the Forward (and now Viterbi) algorithms as computing sums of all
paths (best paths) in this graph

x1.p = arg max P(zy.pley.r) = arg max P(z1.7,; e1:7)
: T1m T
myla] = max P(@1:y—1, @, €1:4)

= max P(x1:—1,e14—1) P(at

2e—1) P (e,

= P(et|xe) max P(flftlllf/,71)‘,r?/a>§z P(x1:4—1,€1:4—1)

= P(e4]

o) maf P(xi|lxi_1)my [z 1] 22

Example

Rain | Rain, Rain 3 Rain 4 Rain g
state ‘
space
paths

false false false false false ‘
umbrella false

8182 5155 L0361 L0334
most : :
likely
paths 1818 L0491 \ 1237 0173

m 1:1 m 1:2 m 1:3 m 1:4
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